The Matrix Template Library:
A Generic Programming Approach
to High Performance Numerical Linear Algebra *

Jeremy G. Siek Andrew Lumsdaine

Laboratory for Scientific Computing
Department of Computer Science and Engineering
University of Notre Dame

Abstract. We present a unified approach for expressing high performane
merical linear algebra routines for large classes of dendesparse matrices. As
with the Standard Template Library [10], we explicitly segta algorithms from
data structures through the use of generic programmingitgaas. We conclude
that such an approach does not hinder high performance.e&otitrary, writing
portable high performance codes is actually enabled with sun approach be-
cause the performance critical code sections can be gl the algorithms
and the data structures. We also tackle the performancalplitg problem for
particular architecture dependent algorithms such asixaaiatrix multiply. Re-
cently, code generation systems (PHiPAC [3] and ATLAS [1&le been created
to customize the algorithms according to architecture. Aevaegant approach
is to usetemplate metaprograni4d 8] to allow for variation. In this paper we in-
troduce the Basic Linear Algebra Instruction Set (BLAISkdlection of high
performance kernels for basic linear algebra.

1 Introduction

The traditional approach to writing basic linear algebra routines is abatatorial af-

fair. There are typically four precision types that need to be handledlésargl dou-
ble precision real, single and double precision complex), several dtosge types
(general, banded, packed), a multitude of sparse storage types (133pdtee BLAS
Standard Proposal [1]), as well as row and column orientations for each rhgiex

To provide a full implementation one might need to code literally hradd of versions
of the same routine! It is no wonder the NIST implementation of thar§&p BLAS

contains over 10,000 routines and an automatic code generation system [16]

To make matters worse, the performance of codes such as matrix-matriplgnulti
is highly sensitive to the memory hierarchy characteristics, so wrjtimgable high-
performance codes is even more difficult. It is typically necessary to usedeagen-
eration system on top of C or Fortran in order to get the flexibility meeibr register
blocking according to computer architecture.

In this paper we apply the fundamental generic programming approachesysed b
the Standard Template Library (STL) to the domain of numerical linear edgdthe
resulting library, which we call th#latrix Template Library(MTL) provides compre-
hensive functionality with a small number of of fundamental algorghmhile at the

* This work was supported by NSF grants ASC94-22380 and CARJ30.

same time achieving high performance. We also explore the usargflate metapro-
gramsin the construction of the BLAIS kernels, which provide an eleganitgm to
portable high performance for matrix-matrix multiply and other bledkodes.

The Matrix Template Library [11] is in its second generation, and has been com
pletely rewritten using generic programming techniques.

2 Generic Programming

The principal idea behind the STL is that many algorithms can be abstrasted a
from the particular data structures on which they operate. Algoritgpisally need the
abstract functionality of being able tcaversethrough a data structure amgcessts
elements. If data structures provide a standard interface for traversataasls, generic
algorithms can be mixed and matched with data structures (czdlethinersin STL).
This interface is realized through tliterator (sometimes called a generalized pointer).

Abstractly, linear algebra operations also consist of traversing tfreectors and
matrices. Vector operations fit neatly into the generic programming approhetSTL
already defines several generic algorithms for vectors, su¢masr _pr oduct () .
Extending these generic algorithms to encompass the rest of the conavelrl BLAS
[9] is a trivial matter.

tenmpl ate <cl ass Row2DIter, class IterX, class IterY> void
matvec: :mult (Row2Dliter i, Row2Dliter iend, IterX x, IterYy) {
typenane Row2Dlter::value_type::const_iterator j;
while (not_at(i, iend)) {
j = (*i).begin();
typenanme IterY::value_type tnp(0);
while (not_at(j, (*i).end())) {
tnp += *j * x[j.index()];
++j ;

}
y[i.index()] = tnp;
++i ;

Fig. 1. Simplified example of a generic matrix-vector product.

Matrix operations are slightly more complex, since the elements aregeuan a 2-
dimensional format. The MTL processes matrices as if theg@améainers of containers
(note that the matrix implementations are typically not actual contaifi@aainers).

The matrix algorithms are coded in termsitd#rators andtwo-dimensional iterators
A Row2Dl t er can traverse the rows of a matrix, and produces a row vector when
dereferenced. The iterator for the row vector can then be used to access theéuabivi

matrix elements. The example in Fig. 1 shows how one can write a genatitxm
vector product.

Function Name Operation Function Name Operation
Vector Algorithms Vector Vector

set (x, al pha) Ti — copy(Xx,Y) Yy x

scal e(x, al pha) T+ azx swap(Xx,y) Yy

s = sun(x) §4= Y i elemult(x,y,2) |z+yR=z

s = one_nor n(x) sy | @i el ediv(x,y, z) 2 yYQx

s = two.nor nm(x) s (), 22)7 add(x, y) yz+y

s = inf_normx) 5 < max| z; | s = dot(x,Yy) sz’ -y

i = find.max_abs(x) |i « indexof max z; |[s = dot conj (X, y)|s « =7 -§

s = max(Xx) s «maxz;)

s = mn(x) s <min(z;)

Matrix Algorithms Matrix Vector

set (A al pha) A+« mul t (A X,Y) Yy Axz
scal e(A al pha) A+ aA mul t (A X, Y, 2) z+— Axz+y
set _di ag(A al pha) [Aii « « tri_solve(T,x,y) lyeT'xz
s = one_nor n{ A) s = maz;()_. | ai; |)|r ank_one(x, A) Ac—zxyT+ A4
s = i nf_norn(A) s < maz;(}.. | aij)[ranktwo(x,y, A) |4z xy"+
transpose(A A+ AT yxzl + A
Matrix Matrix

copy(A, B) B+ A swap(A, B) B+ A
add(A, © C—A+C eleult(ABC |[C+~B®A
mul t (A B, © C+ AxB mul t (A B, C E) E+~ AxB+C
tri_solve(T, B, C C+«T 'xB

Table 1. MTL linear algebra operations.

3 MTL Algorithms

Table 1 lists the principal algorithms covered by MTL. This list seeperse, but a
large number of functions are indeed provided through the combinatitne above al-
gorithms with thest ri ded(), scal ed(), andt r ans() adapter functions. Fig. 2
shows how this is done with a matrix-vector multiply and with a scatector assign-
ment.

The unique feature of the Matrix Template Library is that, for the hpast, each
of the algorithms is implemented with just one template functiost dae algorithm
is used whether the matrix is sparse, dense, banded, single precisibte,dmmplex,
etc. From a software maintenance standpoint, the reuse of code gives Mgtificant
advantage over the BLAS [4, 5] or even other object-oriented librariesTiMT [14]
(which has different algorithms for different matrix formats).

The generic algorithm code reuse results in the MTL having 10 timesrfines of
code than the netlib Fortran BLAS while providing greater functidgaid achieving

I y <- A * alpha x

matvec: :mult(trans(A), scal ed(x, alpha), strided(y,incy));
I y <- al pha x

vecvec: : copy(scal ed(x, al pha), vy);

Fig. 2. Transpose, Scaled, and Strided Adapters

generally better performance, especially for level 2 and 3 operations. The M3L h
8,284 lines of code for the algorithms and 6,900 lines of code foraleostainers, for

a total of 15,184 lines of code. The Fortran BLAS total 154,495 lifeode, an order
of magnitude more.

4 MTL Components

The Matrix Template Library defines a set of data structures and other camgzdior
representing linear algebra objects. An MTL matrix is constructed with $agcom-
ponents. Each layer is a collection of classes that are templated on the loweT lager
bottom most layer consists of the numerical typeksdat , doubl e, etc). The next
layers consist of 1-D containers followed by 2-D containers. The 2-Datoerts are
wrapped up with arorientation which in turn is wrapped with ashape A complete
MTL matrix type typically consists of a templated expression in thhenfehape <
orientation < twod < oned < numtype > > > > Forexample, an up-
per triangular matrix would be definedtsi angl e< col um< dense2D< doubl e
> > upper>. Some 2-D containers also subsume the 1-D type, such as the contigu-
ousdense2Dcontainer.

Matrix Orientation Ther owandcol unm adapters map theajor andminor aspects
of a matrix to the correspondinigw or column This technique allows the same code for
data structures to provide both row and column orientations of thexmatD contain-
ers must be wrapped up with one of these adapters to be used in the MTithatgo

Matrix Shape Matrices can be categorized into several shapes: general, upper trian-
gular, lower triangular, symmetric, Hermitian, etc. The traditional apph to handling

the algorithmic differences due to shape is to have a separate funatieadh type. For
instance, in the BLAS we have &M/, _SYMV, _TRW, etc. The MTL instead uses
different data structures for each shape, withtth@ded, t ri angl e, symmetri c,
andher i t i an matrix adapters. Itis the responsibility of these adapters to make sure
that they work with all of the MTL generic algorithms. The MTL phslaphy is to use
smarterdata structures to allow for fewer and simpler algorithms.

5 The High Performance Layer

We have presented many levels of abstraction, and a set of unified algefitnra
variety of matrices, but this matters little if high performance can n@dbeeved. Tem-

plate based programming coupled with modern compilers such as Kuck anciseso
(KAL) C++ [7] provide several mechanisms for high-performance.

Static PolymorphisnmiThe template facilities in C++ allow functions to be selected at
compile-time based on data type. This provides a mechanism for abstradtioh
preserves high performance. Dynamic (run-time) dispatch is avoidedharidrhplate
functions can be inlined just as regular functions. This ensures thatuimerous small
function calls in the MTL (such as iterator increment operators) introchextra
overhead.

Lightweight Object OptimizationThe generic programming style introduces a large
number of small objects into the code. This incurs a performance penaltydeetiaa
presence of a structure can interfere with other optimizations, induttie mapping

of the individual data items to registers. This problem is solvetth winall object op-
timization, also know as scalar replacement of aggregates [12], which is pexddyy
the KAI C++ compiler.

Automatic Unrolling Modern compilers can do a great job of unrolling loops and
scheduling instructions, but typically only for specific (recognizablses. There are
many ways, especially in C and C++ to interfere with the optimization proddss
abstractions of the MTL are designed to result in code that is easy for thpile to
optimize. Furthermore, thigerator abstraction makes inter-compiler portability possi-
ble, since it encapsulates how looping is performed.

Algorithmic Blocking The bane of portable high performance numerical linear algebra
is the need to tailor key routines to specific execution environmentexaonple, to ob-
tain high performance on a modern microprocessor, an algorithm mysery@xploit
the associated memory hierarchy and pipeline architecture (typically throageful
loop blocking and structuring). Ideally, one would like to expragsh performance
algorithms in a portable fashion, but there is not enough expe®sss in languages
such as C or Fortran to do so. Recent efforts (PHIPAC [3], ATLAS [15yeh&sorted
to going outside the language, i.e., to code generation systemsgintoighin this kind
of flexibility. In the following sections we present the Basic Lin&dgebra Instruction
Set (BLAIS), a library specification that takes advantage of certain featurae @4+
language to express high-performance loop structures at a high level.

5.1 The Basic Linear Algebra Instruction Set (BLAIS)

The BLAIS specification containfixed sizealgorithms with functionality equivalent
to that of the Level-1, Level-2, and Level-3 BLAS [4, 5, 9]. The BISAloutines them-
selves are implemented using the Fixed Algorithm Size Template (FAS&)Y, which
contains general purpose fixed-size algorithms equivalent in functiptathe generic
algorithms in the STL. The thin BLAIS routines merely map the genefi§T algo-
rithms into fixed-size mathematical operations. There is no added overhgsdayer-
ing because all the function calls are inlined. Using the FAST libragnallthe BLAIS
routines to be expressed in a simple and elegant fashion. Note thatéhded use of

the BLAIS routines is to carry out the register blocking within aykaralgorithm. This
means the BLAIS routines handle only small matrices, and therefore tnmjaroblem
of excessive code bloat.

In the following sections, we describe the implementation of theTFAlgorithms
and then show how the BLAIS are constructed from them. Next, we denadabiow
the BLAIS can be used as high-level instructions (kernels) to handlestjister level
blocking in a matrix-matrix product. Finally, experimental resul®w that the per-
formance obtained by our approach can equal and even exceed that of vendor-tuned
libraries.

Fixed Algorithm Size Template (FAST) Libramhe FAST Library includes generic al-
gorithms such asr ansf or m() ,f or _each(),i nner _product () ,andaccum

ul at e() that are found in the STL. The interface closely follows that of the STL
All input is in the form ofiterators The only difference is that the loop-end iterator
is replaced by @ount templat@bject. The example shown in Fig. 3 demonstrates the
use of both the STL and FAST versionstafansf or n() to realize anAXPY-like
operation ¢ < z + y). Thefirst 1 andl ast 1 parameters are iterators for the first
input container (indicating the beginning and end of the containereotisply). The
first 2 parameteris an iterator indicating the beginning of the second inpudioent
Ther esul t parameter is an iterator indicating the start of the output container. The
bi nary_op parameter is a function object that combines the elements from the first
and second input containers into the result containers.

int x[4] = {1,1,1,1}, y[4] = {2, 2,2,2};

/] STL

template <class Inlterl, Inlter2, Qutlter, BinaryQp>

Qutlter transfornm(Inlterl firstl,Inlterl lastl,Inlter2 first2,
Qutlter result,BinaryQp binary_op);

transform(x, x + 4, y, y, plus<int>());

/] FAST
tenplate <int N, class Inlterl, class Inlter2,
class Qutliter, class Bi nOp>
Qutlter fast::transform(Inlterl firstl, cnt<N>,Inlter2 first2,
Qutlter result, BinQp binary_op);

fast::transform(x, cnt<4>(), y, y, plus<int>());

Fig. 3. Example usage of STL and FAST versiong ofansf or () .

The difference between the STL and FAST algorithms is that STL accommodates
containers of arbitrary size, with the size being specified at run-time. FASTworks
with containers of arbitrary size, but the size is fixed at compile time.i¢n & we

show how the FAST r ansf or n{) routine is implemented. We use a tail-recursive
algorithm to achieve complete unrolling — there is no actual loop ifFk®Tt r ans-

for m() . The template-recursive calls are inlined, resulting in a sequeniicopies

of the inner loop statement. This technique (sometimes ctdleglate metaprograms
has been used to a large degree in the Blitz++ Library [19].

/1 The general case
template <int N, class Inlterl, class Inlter2,
class Qutlter, class Bi nOp>
inline Qutlter
fast::transform(Inlterl firstl, cnt<N>, Inlter2 first2,
Qutlter result, BinOp binary_op) {
*result = binary_op (*firstl, *first2);
return transforn(++firstl, cnt<N1>(), ++first2,
++result, binary_op);
}
/1 The N = 0 case to stop tenplate recursion
tenplate<class Inltrl,class Inltr2,class Qutltr,class Bi nQp>
inline Qutltr
fast::transform(Inltrl firstl, cnt<0>, Inltr2 first2,
Qutltr result, BinOp binary_op) {
return result; }

Fig. 4. Definition of FASTt ransf orn() .

BLAIS Vector-Vector OperationBig. 5 gives the implementation for the BLAIS vector
add() routine, and shows an example of its use. The FAS&nsf or n{) algorithm
is used to carry out the vector-vector addition as it was in the examplesabov

The comments on the right show the resulting code after the calldt() is
inlined. Thescl () function used above demonstrates the purpose oftted e_-
i terator.Thescal e_it erat or multiplies the value fronx by a when the itera-
tor is dereferenced within treedd (') routine. This adds no extra time or space overhead
due to inlining and lightweight object optimizations. Thel (x, a) call automati-
cally creates the propsical e_i t er at or out ofx anda.

BLAIS Matrix-Vector OperationsThe BLAIS matrix-vector multiply implementation
is depicted in Fig. 6. The algorithm simply carries out the vector addatioerfor the
columns of the matrix. Again a fixed depth recursize algorithm is useathAdecomes
inlined by the compiler.

BLAIS Matrix-Matrix OperationsThe BLAIS matrix-matrix multiply is implemented
using the BLAIS matrix-vector operation. The code looks very sintddhe matrix vec-

tor multiply, except that there are three integer template argumentsl(sihd K), and

the inner “loop” contains a call tomt vec: : nul t () instead ofvecvec: : add() .

/1 Definition
tenmplate <int N> struct vecvec::add {
tenplate <class Iterl, class Iter2> inline
vecvec::add(lterl x, lter2 y) {
typedef typename iterator_traits<lterl>::value_type T,
fast::transform(x, cnt<N>(), vy, vy, plus<T>());

s

/1 Exampl e use

doubl e x[4], y[4]; /1 y[0] += a * x[0];
fill(x, x+4, 1); fill(y, y+4, 5); /Il y[1] +=a * x[1];
double a = 2; /Il y[2] += a * x[2];
vecvec: : add<4>(scl (x, a), y); /1 y[3] +=a * x[3];

Fig. 5. Definition an Use of BLAISadd() .

5.2 A Configurable Recursive Matrix-Matrix Multiply

A high performance matrix-matrix multiply code is highly sensitieethe memory
hierarchy of a machine, from the number of registers to the levels anddineshe.
To obtain the highest performance, algorithmic blocking must be dbveach level of
the memory hierarchy. A natural way to formulate this is to write therixahatrix

multiply in a recursive fashion, where each level of recursion perforimsking for a

particular level of the memory hierarchy.

We take this approach in the MTL algorithm. The size and shapes of tiokséd
each level are determined by thkcking adapterEach adapter contains the informa-
tion for the next level of blocking. In this way the recursive altfum is determined by
a recursive template data-structure (which is set up at compile time)sdtu@ code
for the matrix-matrix multiply is show in Fig. 7. This examplebks for just one level
of cache, with 64 x 64 sized blocks. The small 4 x 2 blocks fit into regisiote that
these numbers would normally be constants that are set in a header file.

The recursive algorithm is listed in Fig. 8. The bottom most lefalegursion is
implemented with a separate function that uses the BLAIS matrix-matrltpty, and
“cleans up” the leftover edge pieces.

5.3 Optimizing Cache Conflict Misses

Besides blocking, another important optimization that can be done vathxymatrix
multiply code is to perform block copies. Typically utilization of thevel-1 cache is
much lower than one might expect due to cache conflict misses. This is espapiall
parentin direct mapped and low associativity caches. The way to minimize thilem
is to copy the current block of matriX into a contiguous section of memory [8]. This
allows the code to use blocking sizes closer to the size of the L-1 cadheuwinducing
as many cache conflict misses.

It turns out that this optimization is straightforward to implem#nbur recursive
matrix-matrix multiply. We already have block objects (submatritdd ock, *B_j ,

/1l Ceneral Case
template <int M int N>
struct mult {
tenmpl ate <class ACollter, class IterX, class IterY> inline
mult (ACol Iter A 2Diter, IterX x, lterYy) {
vecvec: : add<M>(scl ((*A_2Diter).begin(), *x), Vy);
mul t<M N-1>(++A 2Diter, ++x, Yy);

}
I
/1 N =0 Case
tenplate <int M
struct mult<M 0> {
tenmpl ate <class ACollter, class IterX, class IterY> inline
mult (ACol Iter A 2Diter, IterX x, lterYy) {
/1 do nothing
}
b

Fig. 6. BLAIS matrix-vector multiplication.

tenpl ate <class Mat A, class MatB, class Mat &
void matmat::mult(Mat A& A, MatB& B, MatC& C) {
Mat A: : Regi st er Bl ock<4, 1> A LO; MatA:: Bl ock<64, 64> A L1;
Mat B: : Regi st er Bl ock<1, 2> B _LO; MatB:: Bl ock<64, 64> B L1;
Mat C. : CopyBl ock<4, 2> C_LO; Mat C: : Bl ock<64, 64> C L1;
matmat @ : __nmul t (bl ock(bl ock(A, A LO, A L1),
bl ock(bl ock(B, B_L0O), B L1),
bl ock(bl ock(C, C_LO), C L1));

Fig. 7. Setup for the recursive matrix-matrix product.

and* Cj) in Fig. 8. We modify the constructors for these objects to make a tmpy
contiguous part of memory, and the destructors to copy the block batletoriginal
matrix. This is especially nice since the optimization does not clutteratjorithm
code, but instead the change is encapsulated indipg _bl ock matrix class.

6 Performance Experiments

The compilers used were Kuck and Associates C++ [7] (for C++ to C trans)asind
the Sun Solaris C compiler with maximum available optimizations. &geriments
were run on a Sun UltraSPARC 170E. Fig. 9 shows the sparse matrigrysetfor-
mance for MTL, SPARSKIT [17] (Fortran), NIST [16](C), and TNT (C+¥he sparse
matrices used are from the MatrixMarket [13] collection. The matrix-matrultiply

tenpl ate <class MatA, class MatB, class Mat C

void matmat:: __nult(Mat A& A, MatB& B, MatC& C) {
A k = A begin_colums(); B_k = B.begin_rows();
while (not_at (A k, A end_colums())) {

Ci =Chbegin_rows(); Aki = (*AK).begin();
while (not_at(C.i, Cend_rows())) {
B kj = (*B_k).begin(); Cij = (*C.i).begin();

Mat A: : Bl ock A block = *A ki;

while (not_at(B_kj, (*B_k).end())) {
__mult(A block, *B Kkj, *C.ij);
++B kj; ++Cij;

} ++C.i; ++A ki;

} ++A k; ++B_k;
}
}

Fig. 8. A recursive matrix-matrix product algorithm.

performance for MTL, the Sun Performance Library, TNT, and the Netlitr&o BLAS
is shown in Fig. 10.

7 Supplemental Libraries

The Matrix Template Library provides a nice foundation for constngcportable high
performance libraries. We have created two such libraries, the ITL anditASBThe
Iterative Template Library (ITL) is a collection of sophisticated itaragolvers similar
to the Iterative Methods Library (IML)[6]. It calls the MTL for itsasic linear algebra
operations. We have implemented the standard BLAS routines usiniyiTihedata
structures and algorithms. Our initial tests show that the performesncemparable
(within £5%) to the Fortran BLAS and vendor-tuned BLAS.

Additionally, we have provided an MTL interface to LAPACK [2], sattusers of
MTL have a convenient way to access the LAPACK functionality.

8 Conclusion

Recent attempts to create portable high performance linear algebra routireescha
lied upon specialized code generation scripts in order in provide enoughilitg in

C and Fortran codes. In this paper we have shown that C++ has enough express
to allow codes to be reconfigured for particular architectures by merely chaadevg
constants. In addition, we have found that advanced C++ compilers caaggfiies-
sively optimize in the presence of the powerful MTL abstractions, pcod) code that
matches or exceeds the performance of hand coded C and vendor-tuned libraries.

70

— MTL
- - - SPARSKIT)
60 NIST N
- — - TNT a

Mflops

10 10" 10
Average non zeroes per row

Fig. 9. Sparse matrix-vector multiply.

Acknowledgments

This work was supported by NSF grants ASC94-22380 and CCR9580ZHEe au-
thors would like to express their appreciation to Tony Skjellum and Bamgalore for
numerous helpful discussions.

References

1. BLAS standard draft chapter 3: Sparse BLAS. TechnicabntgBasic Linear Algebra Sub-
programs Technical Forum, December 1997.

2. E. Anderson, Z. Bai, C. Bischoff, J. Demmel, J. DongarraDUCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A poldinear algebra pack-
age for high-performance computers. Rnoceedings of Supercomputing ;3fages 1-10.
IEEE Press, 1990.

3. J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chimpti@izing matrix multiply
using PHIPAC: A portable, high-performance, ANSI C codingthodology. Technical Re-
port CS-96-326, University of Tennessee, May 1996. Alsalabke as LAPACK working
note 111.

4. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A selewél 3 basic linear algebra
subprogramsACM Transactions on Mathematical Softwat€(1):1-17, 1990.

5. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. rilgo 656: An extended
set of basic linear algebra subprograms: Model implemiamtstand test programsACM
Transactions on Mathematical Softwafel(1):18—-32, 1988.

6. Roldan Pozo Jack Dongarra, Andrew Lumsdaine and KariremiRgton.lterative Methods
Library Reference Guidev. 1.2 edition, 1997.

~

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

— MTL
250 I - - - Sun Perf Lib
- Fortran BLAS

TNT

0 Il L
10 10° 10°

Matrix Size

Fig. 10. General matrix-matrix multiply.

Kuck and AssociateKuck and Associates C++ User's Guide

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. Thehe performance and
optimizations of blocked algorithms. lSPLOS IV April 1991.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic liregebra subprograms for
fortran usageACM Transactions on Mathematical Softwab¢3):308—-323, 1979.

Meng Lee and Alexander Stepanov. The standard temjiteéeyl Technical report, HP
Laboratories, February 1995.

Brian C. McCandless and Andrew Lumsdaine. The role afattson in high-performance
computing. InScientific Computing in Object-Oriented Parallel Envircemts ISCOPE,
December 1997.

Steven Muchnick.Advanced Compiler Design and Implementatiddorgan Kaufmann,
1997.

NIST. MatrixMarket. http://gams.nist.gov/MatrixMeaat/.

Roldan PozoTemplate Numerical Toolkit (TNT) for Linear Algebralational Insitute of
Standards and Technology.

Jack J. Dongarra R. Clint Whaley. Automatically tunegkdir algebra software (ATLAS).
Technical report, University of Tennessee and Oak RidgéNal Laboratory, 1997.

Karen A. Remington and Roldan Po2IST Sparse BLAS User's Guideational Institute
of Standards and Technology.

Youcef Saad. SPARSKIT: a basic tool kit for sparse mawixputations. Technical report,
NASA Ames Research Center, 1990.

Todd Veldhuizen. Using C++ template metaprogra@is+ Report May 1995.

Todd Veldhuizen and M. Ed Jernigan. Will C++ be fastentRartran. InScientific Com-
puting in Object-Oriented Parallel EnvironmentSCOPE, December 1997.

https://www.researchgate.net/publication/2416540

