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ABSTRACT
Memory bandwidth limits the performance of important kernels in
many scientific applications. Such applications often use sequences
of Basic Linear Algebra Subprograms (BLAS), and highly efficient
implementations of those routines enable scientists to achieve high
performance at little cost. However, tuning the BLAS in isola-
tion misses opportunities for memory optimization that result from
composing multiple subprograms. Because it is not practical to
create a library of all BLAS combinations, we have developed a
domain-specific compiler that generates them on demand. In this
paper, we describe a novel algorithm for compiling linear alge-
bra kernels and searching for the best combination of optimization
choices. We also present a new hybrid analytic/empirical method
for quickly evaluating the profitability of each optimization. We re-
port experimental results showing speedups of up to 130% relative
to the GotoBLAS on an AMD Opteron and up to 137% relative to
MKL on an Intel Core 2.

1. INTRODUCTION
The performance of many scientific applications and linear alge-

bra kernels is limited by memory bandwidth [24], a situation that
is likely to continue for the foreseeable future [36]. Computer sci-
entists apply tuning techniques to improve data locality and create
highly efficient implementations of the Basic Linear Algebra Sub-
programs (BLAS) [5, 18, 23, 28, 49] and LAPACK [6], enabling
scientists to build high-performance software at reduced cost.

While tuned libraries for the level 3 BLAS and LAPACK rou-
tines perform at or near machine peak, level 1 and 2 BLAS rou-
tines, in which there is less data reuse, achieve only a fraction of
peak [27]. However, sequences of level 1 and 2 BLAS routines
appear in many scientific applications and these sequences repre-
sent further opportunities for tuning. In particular, fusing the loops
of successive BLAS routines reduces memory traffic and increases
performance [8, 27]. Four such combined routines have been added
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to the BLAS standard [13]. Many more combined routines are
needed, but adding every possible combination to the BLAS stan-
dard is not feasible.

To automate the creation of combined routines for level 1 and
level 2 operations, the authors have developed a compiler, named
Build to Order BLAS (BTO), whose input is a sequence of state-
ments of matrix and vector arithmetic in annotated MATLAB and
whose output is a tuned implementation of that sequence in C++.
(Generating C or Fortran instead would be a simple change because
we use very few features specific to C++.) Our initial prototype
applied loop fusion at every opportunity, regardless of profitabil-
ity [47]. In this paper we present a more refined approach in which
the compiler enumerates loop fusion decisions but uses a combi-
nation of analytic and empirical techniques to identify the most
promising choices.

In particular, the contributions of this paper are as follows:

1. We present an algorithm that compiles linear algebra speci-
fications into loops and enumerates the optimization choices
arising from two variants of loop fusion (Section 3).

2. We present a hybrid analytic/empirical performance evalua-
tion method that finds the best combination of optimization
decisions in less than two minutes (Section 4).

3. We report experimental results showing speedups of up to
130% relative to the GotoBLAS [22] on an AMD Opteron
and up to 137% relative to the Intel Math Kernel Library
(MKL) [28] on an Intel Core 2 (Section 5).

The rest of the paper starts with some background and related work
in Section 2. It then discusses the above contributions in Sections
3, 4, and 5. The paper ends with conclusions and plans for future
work in Section 6.

2. BACKGROUND AND RELATED WORK
We start with a review of loop fusion, which we apply to obtain

memory efficiency, then review the literature in domain-specific
compilers, auto-tuning libraries, loop restructuring compilers, and
methods for analyzing the profitability of optimizations.

Loop Fusion The transformation of one or more loops into a
single loop is called loop fusion. If two loops reference the same
matrices or vectors, the temporal locality of those references can
be improved by performing loop fusion. When applied to memory-
bound linear algebra computations, loop fusion can lead to signif-
icant runtime speedups [27]. To be a candidate for loop fusion,
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for j = 1:n
A(:, j)← A(:, j)+u1v1(j)

for j = 1:n
A(:, j)← A(:, j)+u2v2(j)

for j = 1:n

x(j)← βAT (j, :)y+z(j)
for j = 1:n

w ← w+αA(:, j)x(j)

⇒

for j = 1:n
A(:, j)← A(:, j)+u1v1(j)
A(:, j)← A(:, j)+u2v2(j)

x(j)← βAT (j, :)y+z(j)
w ← w+αA(:, j)x(j)

Figure 1: Loop fusion applied to the GEMVER kernel of the
updated BLAS.

the loops must have compatible iterations. For example, they can
both iterate over the column dimension or both iterate over the row
dimension of a matrix. We illustrate loop fusion in Figure 1, apply-
ing it to the GEMVER kernel of the updated BLAS [13]. Assuming
that a column of matrix A remains in cache throughout an iteration
of the loop, the fused implementation only reads and writes A once
from main memory. The benefit comes from not having to make
four calls to BLAS routines where each would read in the matrix
from memory and two would also write A to memory.

While it is often beneficial to fuse loops, it is not always so.
Suppose that there is only enough room in cache for two arrays of
length m. Then it is not profitable to fuse the first two scaled vector
additions on the right hand side of Figure 1 because doing so brings
three arrays (u1, u2, and A(:, j)) through the memory hierarchy at
the same time, causing some of A(:, j) to be evicted. Thus, an
optimizing compiler needs to account for the computer architecture
as well as matrix order, storage format, and matrix sparsity.

Domain-specific Compilers The MaJIC and FALCON compil-
ers for MATLAB optimize matrix expressions according to alge-
braic laws [34, 43], but they do not perform loop fusion. Sev-
eral linear algebra specific compilers take a loop nest specifica-
tion written over a dense matrix and produce implementations of
a sparse matrix operations [10, 38]. Our work differs in that the in-
put is matrix algebra (instead of loops), and we optimize sequences
of operations for memory efficiency. The telescoping languages
project [29] analyzes MATLAB scripts and optimizes them us-
ing procedure specialization, strength reduction, and vectorization.
Similarly, Broadway [26] optimizes calls to libraries such as PLA-
PACK [4]. Our work differs in that we generate the linear algebra
routines instead of making calls to pre-existing libraries.

Considerable research has gone into optimizing arrays in lan-
guages such as HPF [30], APL [15], and many others. Our com-
piler differs in that it applies domain-specific knowledge of linear
algebra to handle a wide range of matrix storage formats. Domain-
specific compilers are growing in popularity with diverse applica-
tions in fields such as DSP transforms [39], tensors [3] and opti-
mizing user-defined abstractions [41].

High-Performance Libraries and Auto-tuning Active libraries
are libraries that optimize themselves [17]. One example is AT-
LAS, which uses empirical guided iterative compilation to gener-
ate linear algebra operations such as matrix multiplication [49, 50].
We instead optimize sequences of matrix operations and focus on
level 2 operations. Blitz++ [48], the Matrix Template Library [46],
and Bernoulli [2] use expression templates to perform loop fusion
inside individual statements but not across statements. The Task-
Graph library uses a dataflow representation to apply loop fusion
across statements at run-time [45]. Our approach fuses loops stati-
cally and separates the compiler into a graph rewriting engine and
linear algebra database for extensibility.

Hierarchically Tiled Arrays (HTA) [11] provide a convenient ab-

straction for writing tiled algorithms. The Formal Linear Algebra
Methods Environment (FLAME) [9, 25] partially automates the
generation and implementation of correct linear algebra algorithms.
Our compiler is fully automatic.

Loop Restructuring Compilers There is a long tradition of op-
timizing compilers for general purpose languages that restructure
loops to improve data locality. The major approaches in this area
are the unimodular [51], affine [32], and polyhedral [14] frame-
works. All of them rely on dependence analysis [31] to determine
when a transformation is legal. This works well for regular arrays
but not sparse matrices. The input to our compiler is in terms of
matrix operations instead of loops, so dependence analysis is not
needed to determine the legality of our transformations.

Analytic Methods for Profitability Analysis Ferrante et al. [20]
estimate the number of cache lines accessed in a perfectly nested
loop using a capacity-based model. Our model also relies on ca-
pacity but handles arbitrary sequences of loop nests and takes reuse
distances into account. Ghosh et al. [21] formulate equations for
reuse distances and cache misses that provide a high-degree of ac-
curacy. However, their model is expensive to evaluate. Rivera and
Tseng [42] develop a conflict model to predict the profitability of
array padding. Our model does not include conflict misses to re-
duce model evaluation time; we rely on empirical testing for that
level of detail. Yotov et al. [53] develop an analytic model for ma-
trix multiplication and show that analytic models can compete with
empirical testing. Agakov et al. [1] apply machine learning in pre-
dicting the profitability of register allocation choices and instruc-
tion scheduling.

Empirical Methods for Profitability Analysis PHiPAC [12] and
ATLAS [49, 50] pioneered the use of empirical search to evalu-
ate the profitability of optimizations in the setting of auto-tuned
libraries. Zhao et al. [55] use exhaustive search and empirical test-
ing to select the best combination of loop fusion decisions. Yi and
Qasem [52] apply empirical search to determine the profitability of
optimizations for register reuse, SSE vectorization, strength reduc-
tion, loop unrolling, and prefetching. Their framework is parame-
terized with respect to the search algorithm and includes numerous
search strategies. Pouchet et al. [37] use decoupling heuristics and
a genetic algorithm in the setting of a polyhedral model to search
for high-performance loop nestings. In this paper we use analytic
models to quickly discard unprofitable choices then use empirical
testing to narrow in on the best.

Hybrid Methods for Profitability Analysis Recently a number
of researchers have explored hybrid methods that use a combina-
tion of analytic modeling and empirical testing. Chen et al. [16]
use analytic methods to select a small number of optimization vari-
ants, applying combinations of loop permutation, unrolling, regis-
ter and loop tiling, copy optimization, and prefetching but not loop
fusion. They use empirical testing to select the best variant, typi-
cally in three to eight minutes. Epshteyn et al. [19] consider loop
tiling decisions in the context of matrix multiplication and use an
explanation-based learning algorithm to adapt their analytic model
based on empirical results.

Qasem [40] uses pattern-based direct search to find good com-
binations of loop fusion decisions. Because Qasem is targeting a
general purpose compiler, he prefers the scalability of direct search
over exhaustive search even though direct search sometimes misses
the globally optimal solution. Yotov et al. [54] advocate using ana-
lytic methods to make rough, global decisions and then use empir-
ical search locally to fine-tune performance.

In this paper we consider loop fusion, which is particularly chal-
lenging because fusion decisions interact with one another. To
avoid local minima, we use exhaustive search combined with an-



Figure 2: Overview of the compilation process.
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Figure 3: Dataflow graph of the GEMVER kernel.

alytic methods to quickly discard unprofitable combinations, then
use empirical testing to select the best. Despite using exhaustive
search, we generate high-performance code in less than two min-
utes (see Section 5). While exhaustive search may not be realistic
for general purpose compilers, our results show that it is effective
in the more restricted setting of linear algebra kernels.

3. THE COMPILATION FRAMEWORK
The BTO compiler generates a high-performance implementa-

tion from a kernel specification. In particular, the input consists
of declarations for the input and output parameters followed by a
sequence of statements written in MATLAB syntax. An example
kernel specification for GEMVER is shown in Listing 1.

GEMVER
in u1 : vector, u2 : vector, v1 : vector,

v2 : vector, alpha : scalar ,
beta : scalar , y : vector, z : vector

inout A : dense column matrix
out x : vector, w : vector {

A = A + u1 ∗ v1’ + u2 ∗ v2’
x = beta ∗ (A’ ∗ y) + z
w = alpha ∗ (A ∗ x)

}

Listing 1: Compiler input for the GEMVER kernel.

The three major phases of the compilation process are input pro-
cessing, optimization, and performance analysis (see Figure 2). We
discuss input processing and optimization in this section and dis-
cuss performance analysis in Section 4.

The compiler parses the kernel specification into a dataflow graph;
the graph for GEMVER is shown in Figure 3. Initially, each node in
the graph represents an input or output parameter or an operation.
Edges between nodes represent the flow of data. After parsing, the
compiler performs type inference to determine the dimensionality

and best traversal pattern for each node.

3.1 Type Inference
The compiler assigns a type to each node in the graph, where

types are given by the following grammar:

orientations O ::= C | R
types τ ::= O<τ> | S.

The type S is for scalars, such as double-precision floating point
numbers. A type of the form O<τ> describes a container with el-
ement type τ and orientation O. The orientation is either C for
column or R for row. Orientation plays two roles: it describes the
shape of the node, e.g., C<S> is a column vector, and it describes
the preferred traversal patterns which are chosen to correspond to
physical memory layout. For example, C<R<S>> describes a ma-
trix whose rows are stored in contiguous memory (as in the lan-
guage C) whereas R<C<S>> describes a matrix whose columns
are stored in contiguous memory (as in Fortran). We define the
following transpose operator on orientations: RT = C, CT = R.

The type inference phase assigns a type to each node and at the
same time chooses how to implement each operation node. The
type inference is data driven, informed by a linear algebra knowl-
edge base of which several rows are shown in Table 1. There is
one row for each algorithm that implements a given operation. An
algorithm is a valid implementation for an operation node in the
graph if 1) the algorithm’s operator (e.g., + or ×) matches the op-
eration label on the node, 2) the operand types match the types of
the operands, and 3) the result type matches the type of the node.
If no algorithm can be inferred for an operation node, the compiler
reports an error.

The notation we use for result types deserves some explanation.
The notation includes the use of the + and × operators within the
type. What this means is that the type inference algorithm is ap-
plied recursively to obtain the result type. For example, consider
the add algorithm whose result type is specified as O<τl + τr>.
Suppose the operands of a node labeled with the operation + both
have type C<S>. To compute the result type we recursively com-
pute the result type for S + S. The only algorithm that applies is
s-add, so the inner result type is S and therefore the outer result
type is C<S>.

Consider the type that would be inferred for the node correspond-
ing to u1 * v1’ in the GEMVER kernel of Listing 1. Because matrix
A has type R<C<S>>, the node for u1 * v1’ must also have type
R<C<S>>. In this case, the only applicable algorithm is add and
that algorithm requires that the orientations of the two operands
match. The compiler therefore chooses the outer2 algorithm for
u1 * v1’ because that version of outer product has a result type that
matches R<C<S>>.

As another example, consider the node corresponding to A’ * y
in Listing 1. The matrix A’ has type C<R<S>> and the vector y
has type C<S>. Thus, the algorithm cc-mult is a match for this
multiplication node and the result type is

C<R<S>× C<S>> = C<S>.

Multiple algorithms may be valid choices for the same node. For
example, the algorithms outer1 and outer2 may sometimes be
valid choices for the same node. In such cases, our compiler makes
an arbitrary choice. As future work, we plan to evaluate the perfor-
mance of each option and choose the best.

3.2 Refinement and Optimization
The primary optimization used in the compiler is loop fusion,

so as the compiler generates loops, it also chooses which loops to



Algo Op and Operands Result Type Pipe
add O<τl> + O<τr> O<τl + τr> yes
s-add S + S S no
trans O<τ>T OT <τT > yes
s-mult S × S S no
rr-mult R<τl>× R<τr> R<R<τl>× τr> yes
cc-mult C<τl>× C<τr> C<τl × C<τr>> yes
dot R<τl>× C<τr>

P
(τl × τr) no

outer1 C<τl>× R<τr> C<τl × R<τr>> yes
outer2 C<τl>× R<τr> R<C<τl>× τr> yes
scale S × O<τ> O<S × τ> yes

Table 1: Sample of the linear algebra knowledge base.

fuse. However, because of complex global interactions, the prof-
itability of a particular fusion decision cannot be made in isolation,
but rather must be made in the context of all the other decisions. For
example, consider a sequence of three loops that are eligible for fu-
sion. The decision to fuse the first two loops cannot be made with-
out considering the third loop because fusing the second and third
loops might result in better locality than fusing the first and second.
Fusing all three loops, on the other hand, might result in lower per-
formance by increasing register pressure or causing reused data to
fall out of cache. To find the optimal set of choices, the BTO com-
piler quickly explores many combinations of fusion decisions.

The BTO compiler carries out implementation and optimization
decisions by applying graph transformations to the dataflow graph.
A graph transformation consists of a pattern that specifies to what
kind of subgraphs the transformation applies and a rewrite rule
that specifies what nodes and edges should be added or removed
from the graph. The graph transformations we use come in two
varieties, refinements and optimizations. A refinement makes an
implementation choice by expanding higher-level operations into
lower-level operations, such as expanding a vector operation into
a loop over scalar operations. The graph transformations for these
refinements are stored in the linear algebra knowledge base. The
optimizing transformations, on the other hand, replace subgraphs
with functionally-equivalent subgraphs that may provide better per-
formance. The optimizing transformations are stored in a separate
knowledge base.

The REFINE and OPTIMIZE algorithms are shown in Figure 4.
The REFINE algorithm carries out the implementation choices that
were made during type inference. It iterates through the graph,
applying the graph transformation associated with the chosen algo-
rithm. When graph transformations add nodes to the graph, they
give new nodes larger indices than existing nodes. Thus, as nodes
are added to the graph, they too are eligible for further refinement.
We discuss particular refinements in Section 3.2.1.

The OPTIMIZE algorithm takes as input the graph produced by
the REFINE algorithm and then explores optimization choices. We
discuss particular optimizations in Section 3.2.2. The OPTIMIZE
algorithm explores choices in a depth-first manner by maintaining
a stack of tuples that represent work items. Each tuple contains a
version of the dataflow graph and the current node.

If the current node is in the graph, then we push that graph back
onto the stack with the node incremented by one to represent the
decision not to optimize this node. The algorithm then searches
for an applicable optimization and applies the optimization to a
copy of the current graph. The transformed graph is also pushed
onto the stack, with the node incremented by one. When we have
finished making decisions for all the nodes in a graph, then the

REFINE(G)
node← 0
while node < G.num_nodes do

algorithm [node].apply(G, node)
node← node +1

return G

OPTIMIZE(G)
S← create_stack()
best_versions ← create_list ()
S.push(〈G, 0〉)
while not S.is_empty() do
〈G, node〉 ← S.pop()
if node < G.num_nodes then

S.push(〈G, node+1〉)
for t in optimizations do

if t .matches(G, node) then
G′← G.copy()
t . apply(G′, node)
S.push(〈G′, node +1〉)

else
ADD-TO-SEARCH-SPACE(G, best_versions)

return best_versions

Figure 4: The REFINE and OPTIMIZE algorithms.

algorithm calls ADD-TO-SEARCH-SPACE, shown Figure 7, which
decides whether the graph should be added to the best_versions list.
ADD-TO-SEARCH-SPACE is described in Section 3.2.3.

The OPTIMIZE algorithm applies one optimization to each node,
in the order in which the nodes are created. This ordering explores
most combinations but is not exhaustive in some situations. We are
currently working on changes to make the algorithm exhaustive.

3.2.1 Graph Refinement
Refinement steps are responsible for reducing high-level matrix

and vector operations into loops and scalar operations. Refinement
steps introduce new nodes to represent loads, stores, and reduc-
tion operations, and they introduce a special kind of subgraph to
represent a generalized form of loop over independent operations.
Depending on the architecture and the nesting of the loops, a gener-
alized loop can be translated into a parallel loop, a sequential loop,
or even a vector instruction.

Generalized loops are created based on the information in Table
1 in the column titled Result Type. For example, in the add row,
the result type is O<τl+τr>. A loop is generated for each container
type (one in this case). In the implementation, we associate extra
information with each container type, such as its size and storage
format, which is needed to generate the loop. The body of the loop
is informed by the container’s element type, in this case τl + τr ,
which means that the body of the loop adds the elements of the
left and right operands. To access elements, we insert nodes to
handle load and store operations. Figure 5 shows an example of
applying two refinements to a matrix addition according to the add
algorithm. Each refinement adds two load nodes, one store node,
and a subgraph (surrounded in dotted lines) to represent a loop.

3.2.2 Optimization
The two methods of loop fusion in use by the compiler are shown

in Figure 6. Figure 6(a) shows the graph transformation for the case
when two independent loops access the same data. This transfor-
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Figure 6: Loop fusion transformations applied by the compiler.

mation replaces two traversals of the data with a single traversal of
the data. Figure 6(b) shows the graph transformation for fusing a
set of pipelined loops. This fusion saves two traversals of the in-
termediate array and removes the need for the intermediate array
altogether. (This is known as array contraction [7] and minimizing
array materializations [44].) The pipelining optimization is appli-
cable to operation nodes whose Pipe column entry is “yes” in the
linear algebra knowledge base (see Table 1).

The BTO compiler does not yet perform loop tiling, and there-
fore does not achieve high performance for matrix multiplication
or other level 3 BLAS operations. Achieving high-performance on
level 3 operations is not a high priority in our work because the
level 3 operations are handled quite well by others [23, 49]; there
is little benefit from combining sequences of operations when the
operations, like matrix multiplication, have a high ratio of com-
putation to memory access. That said, we plan to add loop tiling
because it can achieve modest performance improvements for some
level 1 and level 2 operations.

3.2.3 Search Space Pruning
With our current set of optimizations, the compiler generates be-

tween 1 and 648 optimization combinations for each kernel in our
suite of benchmarks. Empirically testing 648 versions is possible
but, as we add more optimizations, this number will grow quickly,
resulting in a large search space. We therefore include an analytic
evaluation step that is accurate enough to remove the need for em-
pirically testing many of the versions in the search space. The algo-
rithm for pruning the search space is shown in Figure 7. We convert
the graph to an abstract syntax tree (for convenience) and then pass
the tree to the cost estimator described in Section 4. If its cost is
lower than the most costly of the best versions so far, we replace
the most costly version with the new version. The size to which the
set of best versions is allowed to grow is specified by the user.

3.2.4 Translation to C++
After the analytic model has pruned the search space, we gen-

ADD-TO-SEARCH-SPACE(G, best_versions, k)
C ← cost(graph_to_tree(G))
if best_versions . size () < k then

best_versions . insert (〈G, C〉)
else
〈G′, C′〉 ← best_versions.max()
if C < C′ then

best_versions .remove(〈G′, C′〉)
best_versions . insert (〈G, C〉)

Figure 7: Pruning based on cost estimation.

erate code for the best candidates and empirically evaluate their
performance. The BTO compiler generates C++ and then compiles
the C++ to machine code using the platform’s native compiler. The
only non-C feature of C++ that we use is references, so it would be
a simple matter to retarget the code generator to C or Fortran.

The BTO compiler currently does not attempt any lower-level
optimizations such as software pipelining or vectorization but re-
lies instead on the native compiler to do so. For computation-bound
kernels, or kernels without opportunities for loop fusion, this omis-
sion results in sub-optimal performance. In future work, we plan to
also include lower-level optimizations in the compiler.

To translate a dataflow graph to C++, the compiler generates one
loop for each subgraph and generates the obvious expressions to
carry out the scalar operations within each loop. The order in which
the loops, and scalar operations within the loops, appear in the out-
put is determined by topological sorting the dataflow graph.

4. ANALYTIC PREDICTION
To efficiently differentiate between optimization choices, we de-

signed and implemented an analytic model. Section 4.1 describes
how we predict the amount of data accessed from each memory
structure in a machine. We validate these predictions by presenting



measurements from hardware performance counters, hand check-
ing the calculations, and instrumenting the generated code to record
memory accesses. To estimate overall performance, the analytic
model converts data access predictions into execution time as de-
scribed in Section 4.2. We validate the predicted performance by
comparing to the actual performance.

4.1 Predicting Data Accesses
To increase the speed of our model, we restrict it to calculat-

ing only the most distinguishing factors. We assume that memory
structures are fully associative and have a line size equal to the
word size used in the calculation. The model assumes a consecu-
tive access pattern because that is what our compiler produces. The
model treats TLBs and caches identically, with the TLB having a
size equal to its number of entries times page size. We do not model
latency, cache line size, or cache associativity as these factors do
not have a significant impact on the relative performance predic-
tions. In general, we assume a “warm cache”: if the working set
is smaller than cache, we count all memory accesses as cache hits.
For larger working sets, we do not count the first miss that brings
a datum into cache in situations where that datum will be reused
O(n) times or more, where n is the size of a vector or matrix.

Towards defining equations for the number of accesses to each
memory structure, we establish several auxiliary notions. Let x
range over memory structures in a machine. We write prev(x) for
the next smaller memory structure than x. The function prev is
undefined (equal to⊥) for the smallest memory structure (typically
L1 cache). The size of a memory structure x is written size(x).

To represent all memory accesses within a loop L, we use a mul-
tiset of addresses R(L). Each address occurs once in R(L) for
each time it is accessed in loop L (not including subloops). Let d
range over memory addresses. We write R(L)(d) for the number
of occurrences of d in R(L). We write L1 ≤ L2 when L1 is either
the same loop as L2 or nested somewhere within L2. For a loop
L, the working set of the loop, written WS(L), is the number of
unique data accesses in the loop (including sub-loops).

WS(L) = |{d | 0 <
X

L′≤L

R(L′)(d)}|. (1)

The reuse distance of data element d in loop L, written RD(d, L),
is the number of unique data accesses between two accesses to d
during the execution of loop L.

Now we define the hits to a memory structure x in loop L, writ-
ten H(x, L), and we define the accesses to x in loop L, written
A(x, L). These two multisets are mutually recursive but the base
case of A does not rely on H .

H(x, L)(d) =

8>>><>>>:
A(x, L)(d) if WS(L) ≤ size(x) or

(RD(d) ≤ size(x)

and R(L)(d) > 1)

0 otherwise,

(2)

A(x, L) =

(
R(L) if prev(x)=⊥
A(prev(x), L)−H(prev(x), L) otherwise.

(3)

The number of accesses to memory structure x in loop L (not
counting sub-loops) is |A(x, L)|.

4.1.1 Implementation
The model takes as input an abstract syntax tree and a machine.

The first step in using the model is to convert the compiler’s dataflow
graph to an abstract syntax tree. The tree contains three types of

nodes: loops, statements, variables. Each node for a loop con-
tains information about the variables on which it iterates, how many
times the loop is run and pointers to all variables accessed within
the loop. Each statement node contains all the variables that it ref-
erences. A variable node includes the variable’s name, the number
of different iterates that are used to access the variable (if the vari-
able is an array) and the iterates’ names. The top node in an abstract
syntax tree is always one that does not iterate on any variables. It
performs a single iteration to allow the combination of multiple in-
dependent loops for analysis.

A machine is represented in a structure that contains its name,
the number of memory structures it contains, and pointers to those
memory structures. Each memory structure contains the amount of
data it can hold or address, and a bandwidth, all expressed in bytes.

For each memory structure except the smallest, we perform a
depth-first traversal of the abstract syntax tree, evaluating Equation
1 until a loop with a working set smaller than the memory structure
is found. Then accesses to the next larger memory structure are
computed using Equation 3 beginning with the next higher loop in
the tree until the root is reached. Accesses are stored per variable
with each instance of a variable having a distinct miss count.

In the implementation of the model, we trade accuracy for speed.
We only calculate accesses, hits, and reuse distances at the first ele-
ment of each array, which forfeits some accuracy as reuse distances
sometimes change throughout arrays. This simplification only af-
fects our predictions for data sets near cache boundaries.

4.1.2 Evaluation
To ensure the correctness and accuracy of the implementation,

we first compare the accesses computed by the implementation of
the analytic model to those resulting from a by-hand calculation
of Equation 3. The greatest possible difference between the two
is twice the maximum number of variables in a statement (an ar-
ray only counts once) times the wordsize of a data element. This
difference results from the model’s not enforcing the ordering of
variables within a statement. It is small compared to both cache
size and reuse distance. In contrast, the prediction of the points at
which matrices and vectors no longer fit into a memory structure
are in exact agreement.

Comparing the reuse distances calculated by the model to reuse
distances recorded by instrumenting code shows that the model pre-
dicts reuse to within the same constant as the constant for memory
accesses, described above.

Finally, we compare our model’s predictions of memory reads
to the actual number of reads measured by hardware performance
counters. For each memory structure and loop, we divide the num-
ber of accesses by the memory structure’s line or page size, written
LS(x), to obtain the number of cache lines or page table walks
needed for that memory structure, written LA(x):

LA(x) = dA(x, L)/LS(x)e. (4)

Figure 8 shows the predicted and actual memory miss results for
the ATAX kernel. (Misses to a memory structure are equivalent to
accesses from the next larger structure.) A separate graph is used
for each memory structure (See Table 3.) The predicted misses for
the L1 and L2 caches are accurate to within 1% except near cache
boundaries. In those cases, conflict misses play an important role
and expose the difference between the set associativity of the actual
caches and the full associativity assumed by the model.

The TLB is fully associative so it does not experience conflict
misses. The predicted misses for the TLB are accurate to within
10% for large matrices on the Intel Core 2 and the AMD Opteron.



Figure 8: Memory predictions vs. measured values for ATAX
on an Intel Core 2.

Kernel Operation
AXPYDOT z ← w − αv

r ← zT u
ATAX y ← AT Ax
BiCGK q ← Ap

s← AT r
DGEMV z ← αAx + βy
DGEMVT x← βAT y + z

w ← αAx
DSCAL x← αx
GEMVER B ← A + u1v

T
1 + u2v

T
2

x← βBT y + z
w ← αBx

GESUMMV y ← αAx + βBx
MADD C ← A + B
VADD x← w + y + z
WAXPBY w ← αx + βy

Table 2: Kernel specifications.

Processor Speed Mem L1 L2 TLB
Intel Core 2 2.4 GHz 4 GB 32 KB 4 MB 256
AMD Opteron 2.6 GHz 3 GB 64 KB 1 MB 40/512

Table 3: Specifications of the test machines. For TLB, we list
the number of entries.

4.2 Cost Function
To convert memory predictions to a single value for comparing

optimization choices we define a cost function. The cost func-
tion takes as input the data accesses computed by our model (Sec-
tion 4.1.1) and the bandwidth, B(x), between each memory struc-
ture x and the CPU. We obtain the bandwidths using TRIAD from
the Stream benchmark [33].

If L is an inner loop, the cost is computed as follows.

cost(L) = max{A(x, L)/B(x) | for all x}. (5)

We use the largest value of A(x, L)/B(x) because that represents
the bottleneck that limits performance.

We write child(L) for each of the loops directly nested within
loop L. If L is an outer loop, the cost is computed as follows

cost(L) = max{A(x, L)/B(x) | for all x}+
X

c∈child(L)

cost(c). (6)

When applied recursively to the top of the abstract syntax tree,
Equation 6 produces a runtime cost estimate.

In Figures 9 and 10, we compare the runtime estimates from the
cost function with actual runtimes of the compiler-generated codes
on the Intel Core 2. Each graph in Figure 9 shows the results for
the two versions of ATAX produced by the compiler. In each figure,
the lines are numbered according to how much fusion was applied
to that version of the kernel, with number 1 corresponding to no
fusion.

Figure 9 shows that our predictions for large matrices and vectors
are accurate: predicted and actual performances are nearly identi-
cal. For smaller matrices, our predictions are less accurate for two
reasons. First, the model implementation does not currently take
the L1 cache into account, so when L1 bandwidth is the bottle-
neck, the predictions are off. Also, the model does not take the
cost of arithmetic or other computations into account, so the model



over-predicts performance when computation is the bottleneck. At
cache boundaries, our predictions abruptly change while the com-
piler produced versions follow smooth curves. The abrupt changes
happen because the cost model uses the memory model’s predic-
tions. Therefore, jumps in performance in Figure 9 correspond to
the the jumps in memory predictions in Figure 8.

Figure 10 compares our predictions to actual performance for the
648 versions of GEMVER produced by the BTO compiler, at ma-
trix order 3000. It shows that as the actual performance increases,
the predicted performance, for the most part, increases as well. The
model over-predicts performance in all cases, though this inaccu-
racy is less important than the performance difference between ver-
sions. When kernels require temporary storage, the first write to a
temporary array produces ten times the expected TLB misses. If we
replace the TLB predictions with the actual number of TLB misses,
the resulting costs are extremely accurate.

The last observation from Figures 9 and 10 is that our cost func-
tion always finds the best kernel. All of the findings on the Intel
Core 2 hold on the Opteron as well, except for the GEMVER ker-
nel, where the best version is ranked second by the cost function.

5. EXPERIMENTAL EVALUATION
In this section, we present several performance studies. We first

describe our test environment and then present the performance of
the code generated by our compiler when using empirical testing
for the entire search space. We then show that pruning the space
using the analytic model drastically reduces compile time without
significantly decreasing the performance of the generated code.

5.1 Test Environment and Methodology
We evaluated the compiler on the eleven kernels listed in Table

2 and on two computers, the Intel Core 2 and AMD Opteron listed
in Table 3. The selection of kernels tells a complete story regarding
the performance of our compiler. First, we selected several ker-
nels with opportunities for loop fusion to demonstrate situations in
which our compiler shines. Of these, the BiCGK kernel appears in
the biconjugate gradient method, ATAX in the computation of nor-
mal equations, GEMVER, DGEMVT, AXPYDOT, and WAXPBY
appear in the updated BLAS [13], and VADD and MADD are ker-
nels that we created. Next, we selected GESUMMV from the up-
dated BLAS to show a kernel with some opportunities for fusion,
but where fusion does not make big impact. Lastly, we selected the
DGEMV kernel from the BLAS, in which there is no opportunity
for loop fusion.

We compiled the C++ code generated by our compiler using In-
tel’s icc compiler with -O3 and vectorization options. We ran the
experiments on matrix orders ranging from 100 to 10,000 at in-
tervals of 100 and on vector dimensions ranging from 10,000 to
1,000,000 at intervals of 10,000. We compared our compiler’s
performance to several BLAS implementations: GotoBLAS [22],
Netlib [35], Intel’s MKL [28], and AMD’s ACML [5].

For this comparison, we implement each kernel as a sequence of
calls to BLAS. For example, to implement GEMVER, we make two
calls to DGER, two calls to DCOPY, and two calls to DGEMV. All
tests are run a minimum of five times to provide statistically sound
numbers. The values reported in tables and graphs are averages
over all trials. We compute standard deviations, but, in most cases,
they are less than 2%, so we do not include error bars in the graphs.
The only exceptions are for experiments with working sets smaller
than cache.

5.2 Performance of Generated Code
The results in this section show that the BTO compiler achieves
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Figure 9: Predicted vs. actual runtime of three kernels on an
Intel Core 2.



Figure 10: Predicted vs. actual runtime of the 648 versions of
GEMVER produced by the BTO compiler on a Core 2.

higher performance than BLAS-based implementations when a ker-
nel is memory bound and that loop fusion across subroutine bound-
aries reduces memory traffic. In other situations, the BTO compiler
usually achieves slightly lower performance because it relies on the
native compiler for low-level optimizations and it does not perform
other optimizations such as loop tiling.

The graphs in Figure 11 show the performance, on an Intel Core
2, of four BTO-generated kernels compared to BLAS-based imple-
mentations. The graphs in Figure 11 show that the BTO versions
are 21% to 137% faster for level 2 kernels (ATAX, GEMVER)
when the matrix order is 1000 or larger. For level 1 kernels (VADD,
WAXPBY), the BTO-generated code is 60% to 88% faster. The
performance difference for both the level 1 and 2 kernels is due
to increased data reuse in the L2 cache. Table 4 shows L2 cache
misses on the Intel Core 2 for BTO-generated code and the BLAS-
based implementations. The BTO code has between 35% and 62%
the number of L2 misses of the BLAS-based implementations.

Other kernels where loop fusion significantly reduces memory
traffic are BiCGK, DGEMVT, MADD, and AXPYDOT (see Ta-
ble 4). The performance increases for these kernels is summarized
in Tables 5 and 6, which compare the results of BTO to the best
performing BLAS library for two representative sizes.

There are kernels where the BTO compiler performs loop fusion
and does not achieve speedups over BLAS alternatives. For exam-
ple, the BLAS-based GESUMMV is faster than the BTO-generated
code even though our compiler can fuse two DGEMV calls. We do
not see memory (Table 4) or performance (Tables 5 and 6) gains
for GESUMMV because fusion reduces memory accesses by only
O(n), which is dominated by the overall O(n2) memory accesses,
where n is the matrix order. Further, we rely on the native C++
compiler for low level optimizations such as vectorization and in-
struction scheduling, but the native compilers do not optimize as
well as the hand tuning done by Goto and the Intel and AMD
teams. We also see slightly more L2 misses in the BTO version of
GESUMMV than in the MKL version (Table 4), which we conjec-
ture could be due to tiling in the MKL BLAS. The lack of low level
optimizations in the BTO compiler also explains the lower perfor-
mance for small matrix orders on the ATAX and GEMVER kernels.
For sizes less than 1000, when all data fits in cache, memory traffic
is not a bottleneck: vectorization and instruction scheduling in the
inner loop become the primary factors in performance.

The DGEMV kernel is representative of kernels with no fusion
opportunities (beyond the obvious fusion already within DGEMV).
In such situations, the reliance of BTO on the native compiler makes
an even bigger difference. The the BTO-generated DGEMV is 17%
slower than MKL’s for large matrices on an Intel Core 2 (Table
5) and 39% slower than the GotoBLAS on an AMD Opteron (Ta-
ble 6). The reasons for the lower performance are the same as dis-
cussed above for GESUMMV.

For kernels such as ATAX and GEMVER, one might expect even
larger performance improvements than what we observe. For these
kernels, loop fusion saves memory accesses but introduces another
inefficiency. Both kernels read a column or row of the matrix from
memory and then perform a dot product. Then the column or row
is read from cache and a DAXPY is performed. However, while the
column or row is read from cache, the memory bus is idle. Because
moving data through the memory bus is bottleneck of these kernels,
leaving it idle reduces the speedup achieved through fusion. This
problem can be solved by a form of vector-scale software pipelin-
ing, which we plan to integrate into a future edition of the BTO
compiler.

5.3 Efficiency of Hybrid Analysis
This section demonstrates how our hybrid analytic/empirical ap-

proach reduces the overall compile-time without decreasing the
performance of the generated code. In Table 7, we show results
for each algorithm for two different matrix orders or vector di-
mensions (denoted size in the table) on an Intel Core 2. The first
column of the table gives the kernel name followed by the num-
ber of differently-optimized versions produced by the compiler.
The column headed Best Mflops shows the best performance from
the compiler’s empirical search while Model’s Top 1% describes
the versions with predicted performance within 1% of the memory
model’s fastest prediction. Range shows the performance range as
compared to the Best column and Count shows the number of ver-
sions in that top 1%. For most of the kernels, the predicted top 1%
achieve within 10% of the actual best performance, demonstrating
that the analytic model is indeed picking out the best versions. The
only exception is AXPYDOT, where one of the versions from the
predicted top 1% only achieves 75% the performance of the best.
We are looking into this discrepancy in the analytic model.

When there is little performance change from version to version,
as in GESUMMV, the analytic model is not able to reduce the set
for empirical testing. The Range column shows that the 12 versions
vary by a maximum of 8.3%. All 12 versions perform well, so the
next edition of our compiler will perform further pruning in such
situations and only empirically test a small percentage of the best-
performing versions.

Table 8 shows the time taken to compile these kernels. Model
Time is the time to analyze all versions for two different sizes of
data (sizes are the same as shown in Table 5). The two columns
under Empirical Time show the time taken to empirically test the
same two sizes of data using the model’s top 1% and to empirically
test all versions respectively. The two columns under Total Time
show the total compile time, both with pruning (and only empiri-
cally testing the top 1%) and without pruning (empirically testing
all versions). In situations where the model predicts only one ver-
sion in the top 1%, the compiler does not perform empirical testing.
For BiCGK, note that there is only one version in the top 1% for
matrix size 1000 but two for 10,000.

The table shows that, by testing all versions predicted to run
within 1% of the best predicted version, we find the best actual
version. The amount of time it takes to achieve these results is un-
der fifteen seconds for all but GESUMMV. Also, using the model
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Figure 11: Performance of BTO vs. BLAS on Core 2.

Kernel Size BTO MKL

ATAX 1000 106223.8 211139.2
10,000 12529786.2 25068564.8

BiCGK 1000 105802.2 212285.0
10,000 12527997.4 25070363.0

DGEMV 1000 106583.6 106458.8
10,000 12533659.6 12534375.2

DGEMVT 1000 107256.2 211784.6
10,000 12539799.2 25068111.8

GEMVER 1000 245457.8 667241.0
10,000 25086039.2 74461605.0

GESUMMV 1000 249571.2 248366.6
10,000 25067173.6 25057697.2

MADD 1000 375176.8 491180.8
10,000 38788905.2 52858139.0

AXPYDOT 10,0000 3746.6 3108.2
1,000,000 501346.6 742450.2

VADD 100,000 2523.4 3740.2
1,000,000 501609.2 736532.0

WAXPBY 100,000 213.8 604.8
1,000,000 374910.6 601202.2

Table 4: L2 misses on Intel Core 2 for BTO and MKL.

Matrix Size 1000 Matrix Size 10,000
Kernel BLAS BTO Speedup BLAS BTO Speedup
GEMVER 428 958 124% 385 914 137%
BiCGK 939 1381 47% 820 1232 50%
MADD 75 110 47% 73 107 47%
DGEMVT 932 1174 26% 821 990 21%
ATAX 935 1156 24% 817 990 21%
DGEMV 934 757 -19% 818 680 -17%
GESUMMV 816 760 -7% 817 735 -10%

Vector Size 100,000 Vector Size 1,000,000
Kernel BLAS BTO Speedup BLAS BTO Speedup
WAXPBY 1809 2898 60% 232 435 88%
VADD 506 925 83% 99 168 70%
AXPYDOT 995 1571 58% 221 328 48%

Table 5: Performance (in Mflops) of BTO vs best BLAS on an
Intel Core 2. (MKL was always best.)

Matrix Size 1000 Matrix Size 10,000
Kernel BLAS BTO Speedup BLAS BTO Speedup
GEMVER 314 (G) 641 104% 311 (G) 715 130%
MADD 52 (G) 70 35% 72 (A) 102 42%
BiCGK 512 (G) 596 16% 515 (G) 578 12%
DGEMVT 502 (G) 646 29% 512 (G) 545 6%
ATAX 513 (G) 705 37% 516 (G) 542 5%
GESUMMV 553 (G) 515 -7% 737 (G) 555 -25%
DGEMV 528 (G) 336 -36% 545 (G) 330 -39%

Vector Size 100,000 Vector Size 1,000,000
Kernel BLAS BTO Speedup BLAS BTO Speedup
VADD 95 (A) 107 13% 81 (A) 112 38%
AXPYDOT 167 (A) 204 22% 169 (A) 213 26%
WAXPBY 237 (A) 280 18% 234 (A) 285 22%

Table 6: Performance (in Mflops) of BTO vs best BLAS on an
Opteron. G is for the GotoBLAS and A is for ACML.



Kernel Size Best Model’s Top 1%
(versions) Mflops Range Count

ATAX (2) 1000 1160 100% 1
10,000 972 100% 1

BiCGK (3) 1000 1364 96.2-100% 2
10,000 1232 100% 1

DGEMV (4) 1000 753 99.2-100% 4
10,000 680 98.6-100% 4

DGEMVT (8) 1000 1174 100% 1
10,000 990 100% 1

GEMVER (648) 1000 959 100% 1
6000 918 100% 1

GESUMMV (12) 1000 759 92.6-100% 12
10,000 735 91.7-100% 12

AXPYDOT (4) 100000 1571 73.2-100% 2
1,000,000 329 87.5-100% 2

VADD (2) 100000 857 100% 1
1,000,000 169 100% 1

WAXPBY (4) 100000 2981 100% 1
1,000,000 437 100% 1

Table 7: Search space pruning results for Intel Core 2. Best
shows the best possible the compiler is capable of generating
without pruning. For the predicted top 1%, Range shows the
performance range as compared to the Best column and Count
shows the number of versions included in that 1%.

Kernel Model Empirical Total Time (sec)
Time Time (sec) With Without
(sec) Top 1% All Pruning

ATAX 0.002 - 8.87 0.002 8.87
BiCGK 0.002 0.274 12.08 0.276 12.08
DGEMV 0.004 12.98 12.98 12.98 12.98
DGEMVT 0.011 - 38.29 0.011 38.29
GEMVER 2.256 - 3844.2 2.256 3844.2
GESUMMV 0.016 76.17 76.17 76.19 76.17
AXPYDOT 0.003 0.66 1.43 0.66 1.43
VADD 0.001 - 0.67 0.001 0.67
WAXPBY 0.003 - 1.44 0.003 1.44

Table 8: Model Time shows the time to run the model on all ver-
sions for two sizes. For Empirical Time, Top 1% column shows
the time to run the top 1% as ranked by the model and All
shows the time for all versions. Empirical test times include
repetition to get a statistically sound performance number. To-
tal Time shows the total compile time.

dramatically reduces the amount of time it takes to find the best ver-
sion while adding an insignificant cost when it fails to differentiate
between versions. Tests on the AMD Opteron produced the same
findings with one exception: for GEMVER, the model does not
find the best version. It does however find a version within 15%
of the best for a matrix size of 1000 and within 5% of best for a
matrix size of 10,000. Thus, there is room for improvement in our
modeling of the AMD Opteron.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present a compilation framework that trans-

forms linear algebra specifications into C++ after enumerating com-
binations of two loop fusion decisions. We also describe an an-
alytic performance model and show that it can accurately distin-
guish between significant performance differences in the compiler-
produced code. We show that, by using the model, the compiler can
focus empirical testing and greatly reduce compilation time without
significantly decreasing performance of the generated code.

Our future plans for the compiler include increasing the kinds

of optimizations it can perform, including automatic paralleliza-
tion, loop tiling, software pipelining, and array padding. As these
optimizations are added, we plan to update the memory model as
needed to predict their effects. Also, we plan to create a symbolic
version of the memory model so that we can quickly identify re-
gions (with respect to matrix order and vector size) that have sim-
ilar memory behavior. This will enable a reduction in the model’s
execution time and will make possible the use of different tech-
niques (such as loop tiling) for different matrix orders. Addition-
ally, we will explore whether an adaptive memory model would
help the compiler to differentiate more finely between routines. A
model improved in this manner would account for more hardware
and algorithm factors such as cache associativity and varying reuse
distance.
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