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ABSTRACT
Static and dynamic type systems have well-known strengths and
weaknesses. Gradual typing provides the benefits of both in a sin-
gle language by giving the programmer control over which portions
of the program are statically checked based on the presence or ab-
sence of type annotations. This paper studies the combination of
gradual typing and unification-based type inference with the goal of
developing a system that helps programmers increase the amount
of static checking in their program. The key question in combin-
ing gradual typing and type inference is how should the dynamic
type of a gradual system interact with the type variables of a type
inference system. This paper explores the design space and shows
why three straightforward approaches fail to meet our design goals.
This paper presents a new type system based on the idea that a so-
lution for a type variable should be as informative as any type that
constrains the variable. The paper also develops an efficient infer-
ence algorithm and proves it sound and complete with respect to
the type system.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures;F.3.3 [Logics and Program Constructs]: Studies of Program
Constructs—Type structure

General Terms
Languages, Algorithms

Keywords
dynamic typing, static typing, type inference, unification, gradual
typing, simply typed lambda calculus

1. INTRODUCTION
Static and dynamic typing have complementary strengths, mak-

ing them better for different tasks and stages of development. Static
typing, used in languages such as Standard ML [31], provides full-
coverage type error detection, facilitates efficient execution, and
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provides machine-checked documentation that is particularly help-
ful for maintaining consistency when programming in the large.
The main drawback of static typing is that the whole program must
be well-typed before the program can be run. Typing decisions
must be made for all elements of the program, even for ones that
have yet to stabilize, and changes in these elements can ripple through-
out the program.

In a dynamically typed language, no compile-time checking is
performed. Programmers need not worry about types while the
overall structure of the program is still in flux, making dynamic
languages suitable for rapid prototyping. Dynamic languages such
as Perl, Ruby, Python, and JavaScript are popular for scripting and
web applications where rapid prototyping is needed. The problem
with dynamic languages is that they forgo the benefits of static typ-
ing: there is no machine checked documentation, execution is often
less efficient, and errors are caught only at run-time, sometimes af-
ter deployment.

Gradual typing, recently introduced by Siek and Taha [47], en-
ables programmers to mix static and dynamic type checking in a
program by providing a convenient way to control which parts of a
program are statically checked. The defining properties of a gradu-
ally typed language are:

1. Programmers may omit type annotations and run the pro-
gram; run-time type checks preserve type safety.

2. Programmers may add type annotations to increase static check-
ing. When all variables are annotated, all type errors are
caught during compilation.

3. Statically typed regions of a program cannot be blamed for
run-time type errors.

A number of researchers have further studied gradual typing over
the last two years. Herman, Tomb, and Flanagan [21] developed
space-efficient run-time support for gradual typing. Siek and Taha [48]
integrated gradual typing with objects and subtyping. Wadler and
Findler showed how to perform blame tracking and proved that
the well-typed portions of a program can’t be blamed [55]. Her-
man and Flanagan are adding gradual typing to the next version of
JavaScript [20].

An important question, from both a theoretical and practical per-
spective, has yet to be answered: is gradual typing compatible
with type inference? Type inference is common in modern func-
tional languages and is becoming more common in mainstream lan-
guages [56, 19]. There are many flavors of type inference: Hindley-
Milner inference [30], dataflow-based inference [13], Soft Typ-
ing [6], and local inference [38] to name a few. In this paper we
study type inference based on unification [43], the foundation of
Hindley-Milner inference and the related family of algorithms used
in many functional languages [31, 36, 27].



The contributions of this paper are:

• An exploration of the design space that shows why three
straightforward approaches to specifying the type system do
not satisfy our design goals (Section 3). The three approaches
are: 1) treat dynamic types as type variables, 2) check whether
the program is well-typed after substitution, and 3) ignore
dynamic types during unification.

• A new type system based on the idea that the solution for a
type variable should be as informative as any type that con-
strains the variable (Section 4). We formalize this idea in a
type system (Section 4.2) and prove that it satisfies the cri-
teria for a gradually typed language (Section 4.3). The ma-
chine checked proofs are available in a companion technical
report [46].

• An inference algorithm for the new type system (Section 5).
We prove that the algorithm is sound and complete with re-
spect to the type system and that the algorithm has almost
linear time complexity (Section 5.3). The algorithm does not
infer types that introduce unnecessary cast errors. The im-
plementation is freely available at
http://ece.colorado.edu/~siek/gtubi.tar.gz.

Before the main technical developments, we review gradual typ-
ing as well as traditional unification-based inference (Section 2).
After the technical developments, we place our work in relation to
the relevant literature (Section 6) and conclude (Section 7).

2. BACKGROUND
We review gradual typing in the absence of type inference, show-

ing examples in a hypothetical variant of Python [53] that supports
gradual typing but not type inference. We then review type infer-
ence in the absence of gradual typing.

2.1 Review of Gradual Typing
The incr function listed below has a parameter x and returns

x + 1. The parameter x does not have a type annotation so the grad-
ual type system delays checks concerning x inside the incr function
until run-time, just as a dynamically typed language would.

def incr(x):
return x + 1

a:int = 1
incr(a)

More precisely, because the parameter x is not annotated the grad-
ual type system gives it the dynamic type, written ? for short. Next,
consider how x is used inside of incr. To simplify the present dis-
cussion, suppose the + operator expects arguments of type int. The
gradual type system allows the implicit coercion from type ? to int
even though this kind of coercion could fail (like a down cast) and
therefore must be dynamically checked.

To facilitate migrating code from dynamic to static checking,
gradual typing allows for a mixture of the two. In the example
above, we define a variable a of type int and invoke the dynami-
cally typed incr function. Here the gradual type system allows an
implicit coercion from int to ?. This is a safe coercion—it can never
fail at run-time—however the run-time system needs to remember
the type of the value so that it can check the type when it casts back
to int inside of incr.

Gradual typing also allows implicit coercions among more com-
plicated types, such as function types. In the following example,
the map function has a parameter f annotated with the function
type int→ int and a parameter l of type int list.

def map (f:int→int, l:int list):
return [f(x) for x in l]

def incr(x):
return x + 1

a:int = 1
map(incr, [1, 2, 3]) # OK
map(a, [1, 2, 3]) # compile time type error

The function call map(incr, [1, 2, 3]) is allowed by the gradual
type system, even though the type of the argument incr (?→ int)
differs from the type of the parameter (int→ int). The type system
compares the two types structurally and allows the two types to
differ in places where one of the types has a ?. Thus, the function
call is allowed because the return types are equal and there is a ?
in one of the parameter types. In contrast, map(a, [1, 2, 3]) elicits
a compile-time error because argument a has type int whereas f is
annotated with a function type.

Motivation for Implicit Coercions.
The goal of gradual typing is to enable a smooth migration be-

tween dynamic and statically typed code. In the gradual type sys-
tem, a programmer adds type annotations to function parameters
to migrate from dynamic to static, and the compiler inserts or re-
moves run-time checks as needed. If instead the run-time checks
were inserted by the programmer in the form of explicit casts, then
every change to a parameter’s type annotation would require the
programmer to manually insert or remove casts everywhere the pa-
rameter is used. This extra work creates an unnecessary barrier to
migrating code between dynamic and static typing.

Why Subtyping Does Not Work.
Gradual typing allows an implicit up-cast from any type to ?,

similar to object-oriented type systems where Object is the top of
the subtype lattice. However, gradual typing differs in that it also
allows implicit down casts. This is the distinguishing feature of
gradual typing and is what gives it the flavor of dynamic typing.
Previous attempts at mixing static and dynamic typing, such as the
Quasi-static Typing [50], tried to use subtyping but had to deal with
the following problem. If the dynamic type is treated as both the
top and the bottom of the subtype lattice (allowing both implicit
up-casts and down-casts), then the lattice collapses to one point
because subtyping is transitive. In other words, every type is a
subtype of every other type and the type system no longer rejects
any program, even ones with obvious type errors.

Consider the following program.

def add1(x : int)→int:
return x + 1

add1(true)

Using true as an argument to the function add1 is an obvious type
error but we have bool <: ? and ? <: int, so bool <: int. Thus
the subtype-based type system would accept this program. Thatte
partially addressed this problem by adding a post-pass after the type
checker but this still did not result in a system that catches all type
errors within fully annotated code [33].

The Consistency Relation.
Instead of using subtyping, the gradual type system uses a rela-

tion called consistency [47], written ∼. The intuition behind con-
sistency is to check whether two types are equal in the parts where



both types are defined (i.e. not ?). Here are a few examples:

int ∼ int bool 6∼ int ? ∼ int int ∼ ?

? ∼ int→ bool int→ ? ∼ ?→ int int→ ? ∼ int→ bool

int→ ? 6∼ bool→ ? int→ int 6∼ int→ bool

The following is the inductive definition of the consistency relation.
Here we limit the definition to function types but it can be extended
to other type constructors such as object types [48]. We use the
metavariable τ to range over arbitrary types and γ to range over
ground types such as int and bool.

Type Consistency

γ ∼ γ τ ∼ ? ? ∼ τ
τ1 ∼ τ3 τ2 ∼ τ4
τ1 → τ2 ∼ τ3 → τ4

The consistency relation is reflexive and symmetric but not tran-
sitive. The consistency relation is symmetric because we want to
allow implicit coercions both to and from ? as explained above.
The lack of transitivity is necessary for the gradual type system to
still have a static flavor and reject some programs. For example,
because bool 6∼ int, the gradual type system properly rejects the
function call add1(true) in the above example.

At first glance, the consistency rule for function types may seem
strange because it is not covariant and contravariant in the same
way as a subtype relation. Because consistency is symmetric, it
does not make sense to talk of covariance and contravariance: flip-
ping τ1 ∼ τ3 to τ3 ∼ τ1 does not make a difference.

The syntax of the gradually typed lambda calculus (λ?
→) is shown

below and the type system is reproduced in Figure 1. The gradual
type system uses type consistency where a simple type system uses
type equality. For example, the (APP2) rule in the gradually typed
lambda calculus requires that the argument type τ2 be consistent
with the parameter type τ1.

Syntax for λ?
→

Variables x, y ∈ X
Ground Types γ ∈ G ⊇ {bool, int, unit}
Constants c ∈ C ⊇ {true, false, succ, 0, (), fix[τ ]}
Types τ ::= ? | γ | τ → τ
Expressions e ::= x | c | e e | λx :τ. e

λx. e ≡ λx :?. e
let x : τ = e1 in e2 ≡ (λx : τ. e2) e1

(VAR)
Γ(x) = τ1

Γ `g x : τ1
Γ `g e : τ

(CNST) Γ `g c : typeof (c)

(APP1)
Γ `g e1 : ? Γ `g e2 : τ

Γ `g e1 e2 : ?

(APP2)

Γ `g e1 : τ1 → τ3 Γ `g e2 : τ2
τ1 ∼ τ2

Γ `g e1 e2 : τ3

(ABS)
Γ(x 7→τ1) `g e : τ2

Γ `g λx : τ1. e : τ1 → τ2

Figure 1: The type system for λ?
→.

The dynamic semantics of the gradually typed lambda calculus

is defined by a translation to an intermediate language with ex-
plicit casts and by an operational semantics for the intermediate
language [47]. The translation to the intermediate language infers
where casts, i.e. where the run-time type checks, are needed.

The gradually typed lambda calculus meets the three criteria for
a gradually typed language discussed in Section 1.

1. For programs without type annotations, i.e., every variable
is assigned the ? type, little static checking is performed be-
cause the consistency relation allows implicit coercions both
to and from the ? type.

2. When there are no ?s in the program (either explicitly or im-
plicitly), the type system is equivalent to a fully static type
system because the consistency relation collapses to equality
when there are no ?s, i.e., for any σ and τ that contain no ?s,
σ ∼ τ iff σ = τ .

3. We define a safe region of a gradually typed program to be a
region that only contains safe implicit coercions, that is co-
ercions where the source type is a subtype of the target type.
Implicit coercions are turned into explicit casts in the inter-
mediate language and Wadler and Findler [55] show that, for
a richer intermediate language, safe casts cannot be blamed
for run-time type errors.

2.2 Review of Unification-based Type Inference
Type inference allows programmers to omit type annotations but

still enjoy the benefits of static type checking. For example, the
following is a well-typed Objective Caml program. The inference
algorithm deduces that the type of function f is int→ int.

# let f x = x + 1;;
val f : int→int = 〈fun〉 (∗ Output of inference ∗)

The type inference problem is formulated by attaching a type vari-
able, an unknown, to each location in the program. The job of the
inference algorithm is to deduce a solution for these variables that
obeys the rules of the type system. So, for example, the following
is the above program annotated with type variables.

let fα xβ = (xγ +δ 1χ)ρ

The inference algorithm models the rules of a type system as
equations that must hold between the type variables. For example,
the type β of the parameter x must be equal to the type γ of the
occurrence of x in the body of f. The parameter types of + (both are
int) must be equal to the argument types γ and χ, and the return
type of +, also int, must be equal to ρ. Ultimately, the type α
of f must be equal to the function type β → ρ formed from the
parameter type β and the return type ρ. This set of equations can
be solved by unification [43]. A substitution is a mapping from
type variables to types and can be extended to map types to types.
The unification algorithm computes a substitution S such that for
each equation τ1 = τ2, we have S(τ1) = S(τ2).

A natural setting in which to formalize type inference is the sim-
ply typed lambda calculus with type variables (λα→). The syntax is
similar to λ?

→, but with type variables and no dynamic type. The
type system for the simply typed lambda calculus is reproduced in
Figure 2. The extension of this type system to handle type vari-
ables, given below, is also standard [37].

DEFINITION 1. A term e of λα→ is well-typed in environment Γ
if there is a substitution S and a type τ such that S(Γ) ` S(e) : τ .

We refer to this approach to defining well-typedness for programs
with type variables as well-typed after substitution.



Γ(x) = τ1

Γ ` x : τ1
Γ ` e : τ

Γ ` c : typeof (c)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ(x 7→τ1) ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2

Figure 2: The type system of the simply typed λ-calculus.

An inference algorithm for λα→ can be expressed as a two-step
process [57, 37, 16] that generates a set of constraints (type equal-
ities) from the program and then solves the set of equalities with
unification. Constraint generation for λα→ is defined in Figure 3.
The soundness and completeness of the inference algorithm with
respect to the type system has been proved in the literature [57,
37].

Γ(x) = τ

Γ ` x : τ | {}
Γ ` e : τ | C

Γ ` c : typeof (c) | {}

Γ ` e1 : τ1 | C1

Γ ` e2 : τ2 | C2 (β fresh)

Γ ` e1 e2 : β | {τ1 = τ2 → β} ∪ C1 ∪ C2

Γ(x 7→τ) ` e : ρ | C
Γ ` λx : τ. e : τ → ρ | C

Figure 3: The definition of constraint generation for λα→.

In Section 4 we combine inference with gradual typing and in
that setting we need to treat type variables with special care. If we
follow the well-typed-after-substitution approach, type variables
are substituted away before the type system is consulted. As an
intermediate step towards integration with gradual typing, we give
an equivalent definition of well-typed terms for λα→ that combines
the substitution S with the type system. The type system is shown
in Figure 4 and the judgment has the form S; Γ ` e : τ which
reads: e is well-typed because S and τ are a solution for e in Γ.

Formally, we use the following representation for substitutions,
which is common in mechanized formalizations [32].

DEFINITION 2. A substitution is a total function from type vari-
ables to types and its dom consists of the variables that are not
mapped to themselves. Substitutions extend naturally to types, typ-

(SVAR)
Γ(x) = τ

S; Γ ` x : τ
S; Γ ` e : τ

(SCNST) S; Γ ` c : typeof (c)

(SAPP)

S; Γ ` e1 : τ1 S; Γ ` e2 : τ2
S(τ1) = S(τ2 → τ3)

S; Γ ` e1 e2 : τ3

(SABS)
S; Γ(x 7→τ1) ` e : τ2

S; Γ ` λx : τ1. e : τ1 → τ2

Figure 4: The type system for λα→.

ing environments, and expressions. The ◦ operator is the functional
composition of two substitutions.

Theorem 1 states that the type system of Figure 4 is equivalent to
Definition 1 and relies on the following two lemmas. The function
FTV returns the free type variables within a type, type environment,
or expression.

LEMMA 1. If S(Γ) ` S(e) : τ and S is idempotent then
S(τ) = τ .

PROOF. Observe that if S(Γ) ` S(e) : τ then FTV(τ) ∩
dom(S) = ∅. Furthermore, if S is idempotent then FTV(τ) ∩
dom(S) = ∅ implies S(τ) = τ .

LEMMA 2. If S idempotent and S(τ) = τ1 → τ2 then S(τ2) =
τ2.

PROOF. We have τ1 → τ2 = S(τ) = S(S(τ)) = S(τ1 →
τ2) = S(τ1)→ S(τ2). Thus τ2 = S(τ2).

THEOREM 1. The two type systems for λα→ are equivalent.

1. Suppose S is idempotent. If S(Γ) ` S(e) : τ , then there is a
τ ′ such that S; Γ ` e : τ ′ and S(τ ′) = τ .

2. If S; Γ ` e : τ , then S(Γ) ` S(e) : S(τ).

PROOF. 1. S(Γ) ` S(e) : τ =⇒ S(Γ) ` S(e) : S(τ) by
Lemma 1. We prove by induction that S(Γ) ` S(e) : S(τ) implies
there is a τ ′ such that S; Γ ` e : τ ′ and S(τ ′) = S(τ). We use
Lemma 1 in the (APP) case and Lemma 2 in the (ABS) case. Then
using Lemma 1 once more gives us S(τ ′) = τ .

2. The proof is a straightforward induction on S; Γ ` e : τ .

3. EXPLORATION OF THE DESIGN SPACE
We investigate three straightforward approaches to integrate grad-

ual typing and type inference. In each case we give examples
of programs that should be well-typed but are rejected by the ap-
proach, or that should be ill-typed but are accepted.

Dynamic Types as Type Variables.
A simple approach is to replace every occurrence of ? in the pro-

gram with a fresh type variable and then do constraint generation
and unification as presented in Section 2. The resulting system is
fully static, not gradual. Consider the following program.

let z = ...
let f (x : int) = ...
let g (y : bool) = ...
let h (a : ?) = if z then f a else g a

Variable a has type ? and so a fresh type variable α would be intro-
duced for its type. The inference algorithm would deduce from the
function applications f a and g a that α = int and α = bool re-
spectively. There is no solution to these equations, so the program
would be rejected with a static type error. However, the program
would run without error in a dynamically typed language given an
appropriate value of z and input for h. Furthermore, this program
type checks in the gradual type system of Figure 1 so it ought to
remain valid in the presence of type inference.

The next example exhibits a different problem: the inference
algorithm may not find concrete solutions for some variables and
therefore indicate polymorphism in cases where there shouldn’t be.

let f (x : int) (g : ?→?) =
g x



Generating fresh type variables for the ?s gives us g : α → β. Let
γ be the type variable for the return type of f and the type of the
expression g x. The only equation constraining γ is γ = β, so the
return type of f is inferred to be β giving the impression that f is
polymorphic. But if f is really polymorphic in β it should behave
uniformly for any choice β [41, 54]. Suppose g is the identity
function. Then f raises a cast error if β = bool but not if β = int.

While treating occurrences of the dynamic type literally as type
variables does not work, it is a promising direction. The solution
we propose in Section 4 can be viewed as a more sophisticated
variation on this theme.

Ignore Dynamic Types During Unification.
Yet another straightforward approach is to adapt unification by

simply ignoring any unification of the dynamic type with any other
type. However, this results in programs with even more unsolved
variables than in the approach described above. Consider again the
following program.

let f (x : int) (g : ?→?) =
g x

From the function application, the inference algorithm would de-
duce ? → ? = int → β, where β is a fresh variable representing
the result type of the application g x. This equality would decom-
pose to ? = int and ? = β. However, if the unification algorithm
does not do anything with ? = β, we end up with β as an un-
solved variable, giving the impression that f is parametric in β, just
as above.

Well-typed After Substitution.
In Section 2 we presented the standard type system for λα→, say-

ing that a program is well typed if there is some substitution that
makes the program well typed in λ→. We could do something sim-
ilar for gradual typing, saying that a gradually typed program with
variables is well typed if there exists a substitution that makes it
well typed in λ?

→ (Figure 1).
It turns out that this approach is too lenient. Recall that to sat-

isfy criteria 2 of gradual typing, for fully annotated programs the
gradual type system should act like a static type system. Consider
the following program that would not type check in a static type
system because α cannot be both an int and a function type.

let f (g:α) = g 1
f 1

Applying the substitution {α 7→ ?} produces a program that is
well-typed in λ?

→.
The next example shows a less severe problem, although it still

undermines the purpose of type inference, which is to help pro-
grammers increase the amount of static typing in their programs.

let x:α = x + 1

Again, the substitution {α 7→ ?} is allowed, but it does not help
the programmer. Instead, one would like to find out that α = int.
In general, we need to be more careful about where ? is allowed as
the solution for a type variable.

However, we cannot altogether disallow the use of ? in solutions
because we want to avoid introducing run-time cast errors. Con-
sider the program

let f (x:?) =
let y:α = x in y

Here, the only appropriate solution for α is the dynamic type. Any
other choice introduces an implicit cast to that type, which causes a

run-time cast error if the function is applied to a value whose type
does not match our choice for α. Suppose we choose α = int.
This type checks in λ?

→ because int is consistent with ?, but if the
function is called with a boolean argument, a run-time cast error
occurs.

The problem with the well-typed-after-substitution approach is
that it can “cheat” by assigning ? to a type variable and thereby
allow programs to type check that should not. Thus, we need to
prevent the type system from adding in arbitrary ?s. On the other
hand, we need to allow the propagation of ?s that are already in
program annotations.

4. A TYPE SYSTEM FOR λ?α
→

Loosely speaking, we say that types with more question marks
are less informative than types with fewer question marks. The
main idea of our new type system is to require the solution for a
type variable to be as informative as any type that constrains the
type variable. This prevents a solution for a variable from introduc-
ing dynamic types that do not already appear in program annota-
tions. Formally, information over types is characterized by the less
or equally informative relation, written v. This relation is just the
partial order underlying the ∼ relation1. An inductive definition of
v is given below.

Less or Equally Informative

? v τ γ v γ
τ1 v τ3 τ2 v τ4
τ1 → τ2 v τ3 → τ4

The v relation is a partial order that forms a semi-lattice with ? as
the bottom element and v extends naturally to substitutions. The
v relation is the inverse of the naive subtyping relation (<:n) of
Wadler and Findler [55].

We revisit some examples from Section 3 and show how using
the v relation gives us the ability to separate the good programs
from the bad. Recall the following example that should be rejected
but was not rejected by the well-typed-after-substitution approach.

let f (g:α) = g 1
f 1

In our approach, the application of g to 1 introduces the constraint
int→ β0 v α because g is being used as a function from int to β0.
(β0 is a fresh variable generated for the result of the application.)
Likewise, the application of f to 1 introduces the constraint int →
β1 v α → β0 which implies int v α. There is no solution for α
that satisfies both int → β0 v α and int v α, so the program is
rejected.

In the next example, the only solution for α should be int.

let x:α = x + 1

Indeed, in our approach we have the constraint int v α whose only
solution is α = int.

In the third example, the type system should allow α = ? as a
solution.

let f (x:?) =
let y:α = x in y

Indeed, we have the constraint ? v α, which allows α = ? as a so-
lution. In this case the type system allows many solutions, some of
1Each relation is definable in terms of the other: we have τ1 ∼ τ2
iff there is a τ3 such that τ1 v τ3 and τ2 v τ3, and in the other
direction, τ1 v τ2 iff for any τ3, τ2 ∼ τ3 implies τ1 ∼ τ3.



which, as discussed in Section 3 may introduce unnecessary casts.
In our design, the inference algorithm is responsible for choosing
a solution that does not introduce unnecessary casts. It will do this
by choosing the least informative solution allowed by the type sys-
tem. This means the inference algorithm chooses the least upper
bound of all the types that constraint a type variable as the solution
for that variable.

The following program further illustrates how the v relation
constrains the set of valid solutions.

let f (g:?→int) (h:int→?) = ...
let k (y:α) = f y y

The parameter y is annotated with type variableα and is used in two
places, one that expects ?→ int and the other that expects int→ ?.
So we have the constraints ?→ int v α and int→ ? v α and the
solution is α = int→ int.

Constraints on type variables can also arise from constraints on
compound types that contain type variables. For example, in the
following program, we need to delve under the function type to
uncover the constraint that int v α.

let g (f:int→int) = f 1
let h (f:α→α) = g f

In the next subsection we define how this works in our type system.

4.1 Consistent-equal and Consistent-less
To formalize the notions of constraints between arbitrary types,

we introduce two relations: consistent-equal, which has the form
S |= τ ' τ and consistent-less, which has the form S |= τ v
τ . The two relations are inductively defined in Figure 5. The
consistent-equal relation is similar to the type consistency relation
∼ except that ' gives special treatment to variables. When a vari-
able occurs on either side of the ', the type given by S for that
variable is required to be at least as informative as the type on the
other side according to the consistent-less relation. The consistent-
less relation is similar to the v relation except that it also gives
special treatment to variables. When a variable appears on the left,
the substitution for that variable is required to be equal to the type
on the right. (There is some asymmetry in the S |= τ v τ relation.
The substitution is applied to the type on the left and not the right
because the substitution has already been applied to the type on the
right.)

We illustrate the rules for consistent-equal and consistent-less
with the following example.

S |= int→ α ' ?→ (β → (int→ ?))

What choices for S satisfies the above constraint? Applying the
inverse of the (CEFUN) rule we have

S |= int ' ?, S |= α ' β → (int→ ?)

The first constraint is satisfied by any substitution using rule (CEDR),
but the second constraint is satisfied when

S |= β → (int→ ?) v S(α)

using rule (CEVL). There are many choices for α, but whichever
choice is made restricts the choices for β. Suppose

S(α) = (?→ bool)→ (int→ bool)

Then we have

S |= β → (int→ ?) v (?→ bool)→ (int→ bool)

and working backwards using rule (CLFUN) yields

S |= β v ?→ bool, S |= int→ ? v int→ bool

(CEG)
S |= γ ' γ

S |= τ ' τ

(CEDL/R)
S |= ? ' τ S |= τ ' ?

(CEFUN)
S |= τ1 ' τ3 S |= τ2 ' τ4
S |= τ1 → τ2 ' τ3 → τ4

(CEVL/R)
S |= τ v S(α)

S |= α ' τ
S |= τ v S(α)

S |= τ ' α

(CLVAR)
S(α) = τ

S |= α v τ
S |= τ v τ

(CLG)
S |= γ v γ

(CLDL)
S |= ? v τ

(CLFUN)
S |= τ1 v τ3 S |= τ2 v τ4
S |= τ1 → τ2 v τ3 → τ4

Figure 5: The consistent-equal and consistent-less relations.

The second constraint is satisfied by any substitution using (CLFUN),
(CLG), and (CLDL), but the first constraint is only satisfied when

S(β) = (?→ bool)

according to rule (CLVAR).
A key property of the consistent-equal relation is that it allows

the two types to differ in places where they contain ?, but if both
sides are variables, then their solutions must be equal, i.e., if S |=
α ' β then S(α) = S(β). This is why {α 7→ int} is a solution
for the following program but {α 7→ ?} is not.

let f(x:α) =
let y:β = x in y + 1

PROPOSITION 1. (Properties of S |= τ ' τ and S |= τ v τ )

1. S |= τ1 v τ2 and S |= τ3 v τ2 implies S |= τ1 ' τ3.

2. Suppose τ1 and τ3 do not contain ?s. Then S |= τ1 v τ2
and S |= τ1 ' τ3 implies S |= τ3 v τ2.

3. If τ1 and τ2 contain no ?s and S |= τ1 ' τ2, S(τ1) = S(τ2).

4. If τ1 contains no ?s and S |= τ1 v τ2, S(τ1) = τ2.

5. If S |= τ1 ' τ2 → β, then either τ1 = ? or there exist
τ11 and τ12 such that τ1 = τ11 → τ12, τ11 ∼ S(τ2), and
τ12 v S(β).

6. If FTV(τ1) = ∅ and FTV(τ2) = ∅, S |= τ1 ' τ2 iff
τ1 ∼ τ2.

7. If FTV(τ1) = ∅, then S |= τ1 v τ2 iff τ1 v τ2.

4.2 The Definition of the Type System
We formalize our new type system in the setting of the gradually

typed lambda calculus with the addition of type variables (λ?α
→ ). As

in λ?
→, a function parameter that is not annotated is implicitly anno-

tated with the dynamic type. This favors programs that are mostly
dynamic. When a program is mostly static, it would be beneficial to
instead interpret variables without annotations as being annotated
with unique type variables. This option can easily be offered as



a command-line compiler flag. For local variable definitions, pro-
vided by the let form, we use the opposite default, infering the type
of the variable:

let x = e1 in e2 ≡ (λx : β. e2) e1 (β fresh)

With the consistent-equal relation in hand we are ready to define
the type system for λ?α

→ with the judgment S; Γ `g e : τ , shown
in Figure 6. The crux of the type system is the application rule
(GAPP). We considered a couple of alternatives before arriving at
this rule. First we tried to borrow the (SAPP) rule of λα→ (Figure 4)
but replace S(τ1) = S(τ2 → τ3) with S |= τ1 ' τ2 → τ3:

S; Γ `g e1 : τ1 S; Γ `g e2 : τ2 S |= τ1 ' τ2 → τ3

S; Γ `g e1 e2 : τ3

This rule is too lenient: τ3 may be instantiated with ? which allows
too many programs to type check. Consider the following program.

λf : int→ int. λg : int→ bool. f (g 1)

The following is a derivation for this program. The problem is that
the application (g 1) can be given the type ? because {} |= int →
bool ' int → ?. Let Γ0 and Γ1 be the environments defined as
follows.

Γ0 = {f 7→ int→ int}
Γ1 = Γ0(g 7→ (int→ bool))

Then we have

{}; Γ1 `g f : int→ int

{}; Γ1 `g g : int→ bool
{}; Γ1 `g 1 : int

{}; Γ1 `g g 1 : ?

{}; Γ1 `g (f (g 1)) : int

{}; Γ0 `g (λg : int→ bool. f (g 1)) : int

{};`g (λf : int→ int. λg : int→ bool. f (g 1)) : int

The second alternative we explored borrowed the (APP1) and
(APP2) rules from λ?

→, replacing τ1 ∼ τ2 with S |= τ1 ' τ2.

S; Γ `g e1 : ? S; Γ `g e2 : τ

S; Γ `g e1 e2 : ?

S; Γ `g e1 : τ1 → τ3 S; Γ `g e2 : τ2 S |= τ1 ' τ2
S; Γ `g e1 e2 : τ3

This alternative also accepts too many programs. Consider the fol-
lowing erroneous program: ((λx : α. (x 1)) 1). With the substitu-
tion {α 7→ ?} this program is well-typed using the first application
rule for both applications.

The problem with both of the above approaches is that they al-
low the type of an application to be ?, thereby adding an extra ?
that was not originally in the program. We can overcome this prob-
lem by leveraging the definition of the consistent-equal relation,
particularly with respect to how it treats type variables: it does not
allow the solution for a variable to contain more ?s than the types
that constrain it. With this intuition we define the (GAPP) rule as
follows.

(GAPP)

S; Γ `g e1 : τ1 S; Γ `g e2 : τ2
S |= τ1 ' τ2 → β (β fresh)

S; Γ `g e1 e2 : β

The type of the application is expressed using a type variable in-
stead of a metavariable. This subtle change places a more strict
requirement on the variable.

(GVAR)
Γ(x) = τ

S; Γ `g x : τ
S; Γ `g e : τ

(GCNST) S; Γ `g c : typeof (c)

(GAPP)

S; Γ `g e1 : τ1 S; Γ `g e2 : τ2
S |= τ1 ' τ2 → β (β fresh)

S; Γ `g e1 e2 : β

(GABS)
S; Γ(x 7→τ1) `g e : τ2

S; Γ `g λx : τ1. e : τ1 → τ2

Figure 6: The type system for λ?α
→ .

Let us revisit the previous examples and show how this rule cor-
rectly rejects them. For the first example

λf : int→ int. λg : int→ bool. f (g 1)

we have the constraint set

{int→ bool ' int→ β1, int→ int ' β1 → β2}

which does not have a solution because β1 must be the upper bound
of int and bool but there is no such upper bound. The second ex-
ample, ((λx : α. (x 1)) 1), gives rise to the following set of
constraints

{α ' int→ β1, α→ β1 ' int→ β2}

which does not have a solution because α would have to be the
upper bound of int→ β1 and int.

4.3 Properties of the Type System for λ?α
→

When there are no type variable annotations in the program, the
type system for λ?α

→ is equivalent to that of λ?
→.

THEOREM 2. Suppose FTV(Γ) = ∅ and FTV(e) = ∅.

1. If Γ `g e : τ , then ∃Sτ ′. S; Γ `g e : τ ′.

2. If S; Γ `g e : τ , then ∃τ ′. Γ `g e : τ ′ and τ ′ v S(τ).

PROOF. Each is proved by induction on the typing derivations,
with the first statement strengthened prior to applying induction.

The type system for λ?α
→ is stronger (accepts strictly fewer pro-

grams) than the alternative type system that says there must be a
substitution S that makes the program well-typed in λ?

→ (Figure 1).

THEOREM 3.

1. If S; Γ `g e : τ then there is a τ ′ such that S(Γ) `g S(e) :
τ ′ and τ ′ v S(τ).

2. If S(Γ) `g S(e) : τ then it is not always the case that there
is a τ ′ such that S; Γ `g e : τ ′.

PROOF. 1. The proof is by induction on the derivation of
S; Γ `g e : τ . The case for (GAPP) uses Proposition 1,
items 2 and 5.

2. Here is a counter example: (λx : α. x 1) 1.

When there are no ?s in the program, a well-typed λ?α
→ program

is also well-typed in the completely static type system of λα→. The
contrapositive of this statement says that λ?α

→ catches all the type
errors that are caught by λα→.



unify(τ1,τ2) =
case (τ1,τ2) of

(γ,γ′)⇒ if γ = γ′ then return ∅ else error
| (α,τ ) | (τ ,α)⇒

if α ∈ FTV(τ) then error
else return {α 7→ τ}

| (τ1 → τ2,τ3 → τ4)⇒
S1 := unify(τ1,τ3);
S2 := unify(S1(τ2),S1(τ4));
return S2 ◦ S1

| _⇒ error

Figure 7: Substitution-based unification.

THEOREM 4. If e ∈ λα→ and (∀α. Γ(α) = τ =⇒ τ ∈ λα→)
then S; Γ `g e : τ implies S; Γ ` e : τ and τ ∈ λα→.

PROOF. The proof is by induction on the derivation of S; Γ `g
e : τ . The case for (GAPP) uses Proposition 1 item 3.

5. AN INFERENCE ALGORITHM FOR λ?α
→

The inference algorithm we develop for λ?α
→ follows a similar

outline to that of the algorithm for λα→ we presented in Section 2.
We generate a set of constraints from the program and then solve
the set of constraints. The main difference is that we generate '
constraints instead of type equalities, which requires changes to
the constraint solver, i.e., the unification algorithm.

The classic substitution-based unification algorithm, reproduced
in Figure 7, is not suitable for solving ' constraints. Suppose we
have the constraint {α → α ' ? → int}. The unification algo-
rithm would first unify α and ? and substitute ? for α on the other
side of the→. But ? is not a valid solution for α according to the
consistent-equal relation: it is not the case that int v ?. The prob-
lem with the substitution-based unification algorithm is that it treats
the first thing that unifies with a variable as the final solution and
eagerly applies substitution. To satisfy the ' relation, the solution
for a variable must be an upper bound of all the types that unify
with the variable.

The main idea of our new algorithm is that for each type variable
α we maintain a type τ that is a lower bound on the solution of
α (i.e. τ v α). (In contrast, inference algorithms for subtyping
maintain both lower and upper bounds [40].) When we encounter
another constraint α ' τ ′, we move the lower bound up to be
the least upper bound of τ and τ ′. This idea can be integrated
with some care into a unification algorithm that does not rely on
substitution. The algorithm we present is a variant of Huet’s almost
linear algorithm [23, 26]. We could have adapted Paterson and
Wegman’s linear algorithm [35] at the expense of a more detailed
and less clear presentation.

5.1 Constraint Generation
The constraint generation judgment has the form Γ `g e : τ | C,

where C is the set of constraints. The constraint generation rules
are given in Figure 8 and are straightforward to derive from the type
system (Figure 6). The main change is that the side condition on the
(GAPP) rule becomes a generated constraint on the (CAPP) rule.
The meaning of a set of these constraints is given by the following
definition.

DEFINITION 3. A set of constraints C is satisfied by a sub-
stitution S, written S |= C, iff for any τ1 ' τ2 ∈ C we have
S |= τ1 ' τ2.

(CVAR)
Γ(x) = τ

Γ `g x : τ | {}
Γ `g e : τ | C

(CCNST) Γ `g c : typeof (c) | {}

(CAPP)

Γ `g e1 : τ1 | C1

Γ `g e2 : τ2 | C2 (β fresh)
C3 = {τ1 ' τ2 → β} ∪ C1 ∪ C2

Γ `g e1 e2 : β | C3

(CABS)
Γ(x 7→τ) `g e : ρ | C

Γ `g λx : τ. e : τ → ρ | C

Figure 8: The definition of constraint generation for λ?α
→ .

We use one of the previous examples to illustrate constraint gen-
eration and, in the next subsection, constraint solving.

λf : (?→ int)→ (int→ ?)→ int. λy : α. f y y

We generate the following constraints from this program.

{(?→ int)→ (int→ ?)→ int ' α→ β1, β1 ' α→ β2}

Because of the close connection between the type system and
constraint generation, it is straightforward to show that the two are
equivalent.

LEMMA 3. Given that Γ ` e : τ | C, S |= C is equivalent to
S; Γ `g e : τ .

PROOF. Both directions are proved by induction on the deriva-
tion of the constraint generation.

5.2 Constraint Solver
Huet’s algorithm uses a graph representation for types. For ex-

ample, the type α→ (α→ int) is represented as the node u in the
following graph.

u→

��

// w→

||xx
xx

xx
xx

��
vα xint

Huet used a graph data structure that conveniently combines node
labels and out-edges, called the “small term” approach [39, 23].
Each node is labeled with a type, but the type is small in that it
consists of either a ground type such as int or a function type (→)
whose parameter and return type are nodes instead of types. For
example, the above graph is represented by the following stype
function from nodes to shallow types.

stype(u) = v → w stype(v) = var
stype(w) = v → x stype(x) = int

We sometimes write the stype of a node as a subscript, such as
uv→w and xint. Also, when the identity of a node is not important
we sometimes just write the stype label in place of the node (e.g.,
int instead of xint).

Huet’s algorithm uses a union-find data structure [49] to main-
tain equivalence classes among nodes. The operation find(u) maps
node u to its representative node and performs path compression to
speed up later calls to find. The operation union(u,v,f ) merges the
classes of u and v. If the argument bound to parameter f is true
then u becomes the representative of the merged class. Otherwise,
the representative is chosen based on which class contains more
elements, which reduces the time complexity of the algorithm.



solve(C) =
C := copy_dyn(C)
for each node u do
u.contains_vars := true

end for
while not C.empty() do
x ' y := C.pop()
u := find(x); v := find(y)
if u 6= v then

(u, v, f) := order(u,v)
union(u, v, f )
case stype(u) ' stype(v) of

u1 → u2 ' v1 → v2 ⇒ (∗ case 1 ∗)
C.push(u1, v1); C.push(u2, v2)

| u1 → u2 ' ?⇒ (∗ case 2 ∗)
if u.contains_vars then
u.contains_vars := false
w1 = vertex(stype=?, contains_vars=false)
w2 = vertex(stype=?, contains_vars=false)
C.push(w1 ' u1); C.push(w2 ' u2)

| τ ' var | τ ' ?⇒ (∗ pass, case 3 and 4 ∗)
| γ ' γ ⇒ (∗ pass, case 5 ∗)
| _⇒ error: inconsistent types (∗ case 6 ∗)

end while
G = the quotient of the graph by equivalence class
if G is acyclic then

return {u 7→ stype(find(u)) | u a node in the graph}
else error

order(u,v) = case stype(u) ' stype(v) of
| ? ' α⇒ (u, v, true)

| ? ' τ | α ' τ ⇒ (v, u, true)

| τ ' α⇒ (u, v, true)

| _⇒ (u, v, false)

Figure 9: The constraint solving algorithm.

The definition of our solve algorithm is in Figure 9. We defer
discussion of the copy_dyn used on the first line. In each itera-
tion of the algorithm we remove a constraint from C, map the pair
of nodes x and y to their representatives u and v, and then per-
form case analysis on the small types of u and v. In each case we
merge the equivalence classes for the two nodes and possibly add
more constraints. The main difference from Huet’s algorithm is
some special handling of ?s. When we merge two nodes, we need
to decide which one to make the representative and thereby decide
which label overrides the other. In Huet’s algorithm, a type variable
(here nodes labeled var) is overridden by anything else. To handle
?s, we use the rules that ? overrides var but is overridden by any-
thing else. Thus, ? nodes are treated like type variables in that they
may merge with any other type. But they are not exactly like type
variables in that they override normal type variables. These rules
are carried out in cases 3 and 4 of the algorithm.

Before discussing the corner cases of the algorithm, copy_dyn
and case 2, we apply the algorithm to the running example intro-
duced in Section 5.1. Figure 10 shows a sequence of snapshots of
the solver. Snapshot (a) shows the result of converting the gener-
ated constraints to a graph. Constraints are represented as undi-
rected double-lines. At each step, we use bold double-lines to in-

dicate the constraints that are about to be eliminated. To get from
(a) to (b) we decompose the constraint between the two function
types. Nodes that are no longer the representative of their equiv-
alence class are not shown in the graph. Next we process the two
constraints on the left, both of which connect a variable to a func-
tion type. The function type becomes the representative in both
cases, giving us snapshot (c). As before we decompose a constraint
between the two function types into constraints on their children
and we have snapshot (d). We first merge the variable node for
β2 into the int node to get (e) and then decompose the constraint
between the function type nodes into two more constraints in (f).
Here we have constraints on nodes labeled with the ? type. In both
cases the node labeled int overrides ? and becomes the represen-
tative. The final state is shown in snapshot (g), from which the
solutions for the type variables can be read off. As expected, we
have α = int→ int.

Case 2 of the algorithm, for ? ' v1 → v2, deserves some ex-
planation. Consider the program (λf : ?. λx : α. f x). The
set of constraints generated from this is {? ' α → β}. Ac-
cording to the operational semantics from Siek and Taha [47], f
is cast to ? → ?, so in some sense, we really should have the con-
straint ? → ? ' α → β. To simulate this in the algorithm we
insert two constraints: ? ' v1 and ? ' v2. Now, some care must
be taken to prevent infinite loops. Consider the constraint ? ' v
where stype(v) = v → v. The two new constraints are identical to
the original. To avoid this problem we mark each node to indicate
whether it may contain a variable. The flags are initialized to true
and when we see the constraint ? ' v we change the flag to false.

The copy_dyn function replaces each node labeled ? with a new
node labeled ?, thereby removing any sharing of ? nodes. This
is necessary to allow certain programs to type check, such as the
example in Section 3 with the functions f, g, and h. The following
is a simplified example that illustrates the same problem.

λf : int→ bool→ int. λx :?. f x x

From this program we get the constraint set

{int→ bool→ int ' u? → v, v ' u? → w}

If we forgo the copy_dyn conversion and just run the solver, we
ultimately get int ' u? and bool ' u? which will result in an
error. With the copy_dyn conversion, the two occurrences of u?

are replaced by separate nodes that can separately unify with int
and bool and avoid the error. It is important that we apply the
copy_dyn conversion to the generated constraints and not to the
original program, as that would not avoid the above problem.

The infer function, defined in the following, is the overall infer-
ence algorithm, combining constraint generation and solving.

DEFINITION 4. (Inference algorithm) Given Γ and e, let τ , C,
and S be such that Γ ` e : τ | C and S = solve(C). Then
infer(Γ, e) = (S, S(τ)) .

5.3 Properties of the Inference Algorithm
The substitution S returned from the solver is not idempotent. It

can be turned into an idempotent substitution by applying it to itself
until a fixed point is reached, which we denote by S∗. Note that the
solution S′ returned by solve is less or equally informative than
the other solutions, thereby avoiding types that would introduce
unnecessary cast errors.

LEMMA 4. (Soundness and completeness of the solver)

1. If S = solve(C) then S∗ |= C.
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Figure 10: An example run of the constraint solver.

2. If S |= C then ∃S′R. S′ = solve(C) and R ◦ S′∗ v S.

PROOF. The correctness of the algorithm is based on the follow-
ing invariant. Let C be the original set of constraints and C′ the set
of constraints at a given iteration of the algorithm. At each iteration
of the algorithm, S |= C if an only if

1. S |= C′,

2. for every pair of type variables α and β in the same equiva-
lence class, S(α) = S(β), and

3. there is an R such that R ◦ S′ v S, where S′ is the current
solution based on the stype and union-find data structures.

When the algorithm starts, C = C′, so the invariant holds trivially.
The invariant is proved to hold at each step by case analysis. Once
the algorithm terminates, we read off the answer based on the stype
and the union-find data structure. This gives a solution that is less
informative but more general (in the Hindley-Milner sense) than
any other solution, expressed by the clause R ◦ S′∗ v S.

LEMMA 5. The time complexity of the solve algorithm isO(mα(n)),
where n is the number of nodes and m is the number of edges.

PROOF. The number of iterations in the solve algorithm isO(m).
In case 1 of the algorithm we push two constraints intoC and make
the v node and its two out-edges inaccessible from the find oper-
ation. In case 2 of the algorithm, we push two constraints into C
and we mark the function type node as no-longer possibly contain-
ing variables, which makes it and its two out-edges inaccessible to
subsequent applications of case 2. Each iteration performs union-
find operations, which have an amortized cost of α(n) [49], so the
overall time complexity is O(mα(n)).

THEOREM 5. (Soundness and completeness of inference)

1. If (S, τ) = infer(Γ, e), then S∗; Γ `g e : τ .

2. If S; Γ `g e : τ then there is a S′, τ ′, and R such that
(S′, τ ′) = infer(Γ, e), R ◦ S′∗ v S, and R ◦ S′∗(τ ′) v
S(τ).

PROOF. Let τ ′ and C be such that Γ ` e : τ ′|C.

1. By the soundness of solve (Lemma 4) we have S∗ |= C.
Then by the equivalence of constraint generation and the type
system (Lemma 3), we have S∗; Γ ` e : τ .

2. By the equivalence of constraint generation and the type sys-
tem (Lemma 3), we have S |= C. Then by the complete-
ness of solve (Lemma 4) there exists S′ and R such that
S′ = solve(C) and R ◦ S′∗ v S. We then conclude using
the definition of infer.

THEOREM 6. The time complexity of the infer algorithm isO(nα(n))
where n is the size of the program.

PROOF. The constraint generation step is O(n) and the solver
is O(nα(n)) (the number of edges in the type graph is bounded
by 2n because no type has out-degree greater than 2) so the overall
time complexity is O(nα(n)).

6. RELATED WORK
The interface between dynamic and static typing has been a fer-

tile area of research.
Optional Types in Dynamic Languages Many dynamic languages

allow explicit type annotations such as Common LISP [24], Dy-
lan [45, 11], Cecil [7], Boo [9], extensions to Visual Basic.NET
and C# proposed by Meijer and Drayton [29], the Bigloo [44, 5]
dialect of Scheme [25], and the Strongtalk dialect of Smalltalk [3,
4]. In these languages, adding type annotations brings some static
checking and/or improves performance, but the languages do not
make the guarantee that annotating all parameters in the program
prevents all type errors and type exceptions at run-time, as is the
case for gradual typing. One of the primary motivations for the
work on gradual typing was to provide a theoretical foundation for
optional type annotations in dynamic languages.

Interoperability Gray, Findler, and Flatt [17] consider the prob-
lem of interoperability between Java and Scheme and extended Java
with a Dynamic type with implicit casts. They did not provide an
account of the type system, but their work provided inspiration for
our work on gradual typing. Matthews and Findler [28] define an
operational semantics for multi-language programs but require pro-
grammers to insert explicit “boundary” markers between the two
languages, reminiscent of the explicit injection and projections of
Abadi et al.

Tobin-Hochstadt and Felleisen [51, 52] developed a system that
provides convenient inter-language migration between dynamic and
static languages on a per-module basis. In contrast, our goal is
to allow migration at finer levels of granularity and to allow for



partially typed code. Tobin-Hochstadt and Felleisen build blame
tracking into their system and show that run-time type errors may
not originate from statically typed modules. As discussed in Sec-
tion 2.1, gradual typing enjoys a similar property but at a finer level
of granularity: run-time type errors do not originate from “safe”
regions.

Type Inference There is a huge body of literature on the topic
of type inference, especially regarding variations of the Hindley-
Milner type system [30, 8, 22]. Of that, the closest to our work
is that on combining inference and subtyping [10, 40]. The main
difference between inference for subtyping versus gradual typing
is that subtyping has co/contra-variance in function types, whereas
the consistency relation is covariant in both the parameter and re-
turn type, making the inference problem for gradual typing more
tractable.

Gradual Typing In addition to the related work discussed in
the introduction, we mention a couple more related works here.
Anderson and Drossopoulou developed a gradual type system for
BabyJ [2] that uses nominal types. Gronski, Knowles, Tomb, Fre-
und, and Flanagan [18] provide gradual typing in the Sage language
by including a Dynamic type and implicit down-casts. They use a
modified form of subtyping to provide the implicit down-casts.

Quasi-static Typing Thatte’s Quasi-Static Typing [50] is close
to gradual typing but relies on subtyping and treats the unknown
type as the top of the subtype hierarchy. Siek and Taha [47] show
that implicit down-casts combined with the transitivity of subtyping
creates a fundamental problem that prevents this type system from
catching all type errors even when all parameters in the program
are annotated.

Riely and Hennessy [42] define a partial type system for Dπ,
a distributed π-calculus. Their system allows some locations to
be untyped and assigns such locations the type lbad. Their type
system, like Quasi-Static Typing, relies on subtyping, however they
treat lbad as “bottom”, which allows objects of type lbad to be
implicitly coercible to any other type.

Soft Typing Static analyses based on dataflow can be used to per-
form static checking and to optimize performance. The later vari-
ant of Soft Typing by Flanagan and Felleisen [14] is an example
of this approach. These analyses provide warnings to the program-
mer while still allowing the programmer to execute their program
immediately (even programs with errors), thereby preserving the
benefits of dynamic typing. However, the programmer does not
control which portions of a program are statically checked: these
whole-program analyses have non-local interactions. Gradual typ-
ing, in contrast gives the programmer precise control over where
static checking is performed.

Dynamic Typing in Statically Typed Languages Abadi et al. [1]
extended a statically typed language with a Dynamic type and ex-
plicit injection (dynamic) and projection operations (typecase).
Their approach does not satisfy the goals of gradual typing, as mi-
grating code between dynamic and static checking not only requires
changing type annotations on parameters, but also adding or re-
moving injection and projection operations throughout the code.
Gradual typing automates the latter.

Hybrid Typing The Hybrid Type Checking of Flanagan et al. [12,
15] combines standard static typing with refinement types, where
the refinements may express arbitrary predicates. This is analo-
gous to gradual typing in that it combines a weaker and stronger
type system, allowing implicit coercions between the two systems
and inserting run-time checks. A notable difference is that hybrid
typing is based on subtyping whereas gradual typing is based on
type consistency.

Ou et al. [34] define a language that combines standard static

typing with more powerful dependent typing. Implicit coercions
are allowed to and from dependent types and run-time checks are
inserted. This combination of a weaker and a stronger type system
is again analogous to gradual typing.

7. CONCLUSION
This paper develops a type system for the gradually typed lambda

calculus with type variables (λ?α
→ ). The system integrates unification-

based type inference and gradual typing to aid programmers in
adding types to their programs. In the proposed system, a program-
mer uses a type variable annotation to request the best solution for
the variable from the inference algorithm.

The type system presented satisfies the defining properties of a
gradual type system. That is, a programmer may omit type anno-
tations on function parameters and immediately run the program;
run-time type checks are performed to preserve type safety. Fur-
thermore, a programmer may add type annotations to increase static
checking. When all function parameters are annotated, all type er-
rors are caught at compile-time.

The paper also develops an efficient inference algorithm for λ?α
→

that is sound and complete with respect to the type system and that
takes care not to infer types that would introduce cast errors.

As future work, the authors intend to extend the type system and
inference algorithm to handle let-polymorphism as it appears in the
Hindley-Milner type system. We expect that our unification algo-
rithm can be used as-is in that setting though we expect that the
specification of the type system will be rather subtle. We also plan
to investigate improving the modularity of the type inference sys-
tem as it currently performs inference on a whole-program basis.
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