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Abstract
Combining static and dynamic typing within the same language
offers clear benefits to programmers. It provides dynamic typing in
situations that require rapid prototyping, heterogeneous data struc-
tures, and reflection, while supporting static typing when safety,
modularity, and efficiency are primary concerns. Siek and Taha
(2006) introduced an approach to combining static and dynamic
typing in a fine-grained manner through the notion of type con-
sistency in the static semantics and run-time casts in the dynamic
semantics. However, many open questions remain regarding the se-
mantics of gradually typed languages.

In this paper we present Reticulated Python, a system for exper-
imenting with gradual-typed dialects of Python. The dialects are
syntactically identical to Python 3 but give static and dynamic se-
mantics to the type annotations already present in Python 3. Retic-
ulated Python consists of a typechecker and a source-to-source
translator from Reticulated Python to Python 3. Using Reticulated
Python, we evaluate a gradual type system and three approaches to
the dynamic semantics of mutable objects: the traditional semantics
based on Siek and Taha (2007) and Herman et al. (2007) and two
new designs. We evaluate these designs in the context of several
third-party Python programs.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords gradual typing, case study, python, proxy

1. Introduction
Static and dynamic typing are well-suited to different programming
tasks [19]. Static typing excels at documenting and enforcing con-
straints, enabling IDE support such as auto-completion, and help-
ing compilers generate more efficient code. Dynamic typing, on the
other hand, supports rapid prototyping and the use of metaprogram-
ming and reflection. Because of these tradeoffs, different parts of a
program may be better served by one typing discipline or the other.
Further, the same program may be best suited to different type sys-
tems at different points in time, e.g., evolving from a dynamic script
into a statically-typed program.
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For this reason, combining static and dynamic typing within a
single language and type system has been a popular goal, espe-
cially in the last decade. Early approaches include those of Abadi
et al. [2], Thatte [31], and Bracha and Griswold [7]. Siek and Taha
[26] introduced the gradual typing approach to merging such sys-
tems using a notion of type consistency together with higher-order
casts. Numerous researchers have integrated gradual typing with
other language features (Gronski et al. [14], Herman et al. [15],
Siek and Taha [27], Wolff et al. [36], and Takikawa et al. [30]).
Other researchers have adapted the notion of blame tracking [11]
to gradual typing, reporting useful information when type casts fail
(Tobin-Hochstadt and Felleisen [32], Wadler and Findler [35], and
Siek and Wadler [28]).

In this paper, we present Reticulated Python,1 a framework
for developing gradual typing for the Python language. Reticu-
lated uses a type system based on the first-order object calcu-
lus of Abadi and Cardelli [1], including structural object types.
We augment this system with the dynamic type and open ob-
ject types. Reticulated uses Python 3’s annotation syntax for type
annotations and a dataflow-based type inference system to infer
types for local variables. Reticulated is available for download at
https://github.com/mvitousek/reticulated.

Reticulated Python is implemented as a source-to-source trans-
lator that accepts syntactically valid Python 3 code, typechecks this
code, and generates Python 3 code, which it then executes. The
dynamic semantics of Reticulated differs from Python 3 in that
run-time checks occur where implicit casts are needed to mediate
between static and dynamically typed code. The run-time checks
are implemented as calls into a Python library that we developed.
In this way, we achieve a system of gradual typing for Python
that is portable across different Python implementations and which
may be applied to existing Python projects. We also made use of
Python’s tools for altering the module import process to insure that
all imported modules are typechecked and translated at load time.

In addition to serving as a practical implementation of a grad-
ually typed language, Reticulated serves as a test bed for exper-
imenting with design choices for the semantics of casts between
static and dynamically-typed code. We implemented and evaluated
three distinct cast semantics for mutable objects: 1) the traditional
proxy-based approach of Siek and Taha [27] and Herman et al. [15],
but optimized with threesomes [28], 2) an approach that does not
use proxies but involves ubiquitous lightweight checks, and 3) an
approach in which casts cause the runtime types of objects to be-
come monotonically more precise. We refer to these designs as the
guarded, transient, and monotonic semantics. The guarded system
is relatively complicated to implement and does not preserve ob-
ject identity, which we found to be a problem in practice (see Sec-
tion 3.2.5). The transient approach is straightforward to implement

1 Named for Python reticulatus, the largest species of snake in the python
genus. “Reticulated” for short.



and preserves object identity, but when runtime checks discover
that type constraints have been violated, it is unable to report the
location of the original cast that caused the error to occur, a process
known as blame tracking. It therefore is less helpful when debug-
ging cast errors. Monotonic preserves object identity and enables
zero-overhead access of statically-typed object fields but requires
locking down object values to conform to the static types they have
been cast to.

To evaluate the usability of these designs, we performed case
studies in which we applied Reticulated to several third-party code-
bases. We annotated them with types and then ran them using Retic-
ulated. The type system design faired well, e.g. enabling statically-
checked versions of statistics and cryptographic hashing libraries,
while requiring only light code modifications. Further, our exper-
iments detected several bugs extant in these projects. The experi-
ments also revealed tensions between backwards compatibility and
the ability to statically type portions of code. This tension is par-
ticularly revealed by the choice of whether to give static types to
literals. Our experiments also confirmed results from other lan-
guages [33]: type systems for Python should provide some form
of occurrence typing to handle design patterns that rely heavily on
runtime dispatch. Regarding the evaluation of the three cast seman-
tics, our results indicate that the proxies of the guarded design can
be problematic in practice due to the presence of identity tests in
Python code. The transient and monotonic semantics both faired
well.

Gradual typing for Python Regardless of the choice of seman-
tics, gradual type systems allow programmers to control of which
portions of their programs are statically or dynamically typed. In
Reticulated, this choice is made in function definitions, where pa-
rameter and return types can be specified, and in class definitions,
where we use Python decorators to specify the types of object
fields. When no type annotation is given for a parameter or object
field, Reticulated gives it the dynamic (aka. unknown) type named
Dyn. The Reticulated type system allows implicit casts to and from
Dyn, as specified by the consistency relation [26]. In the locations of
these implicit casts, Reticulated inserts casts to ensure, at runtime,
that the value can be coerced to the target type of the cast.

One of the primary benefits of gradual typing over dynamic
typing is that it helps to detect and localize errors. For example,
suppose a programmer misunderstands what is expected regarding
the arguments of a library function, such as the moment function
of the stat.py module, and passes in a list of strings instead of
a list of numbers. In the following, assume read_input_list is a
dynamically typed function and the value it produces is a list of
strings.

1 lst = read_input_list()
2 moment(lst, m)

In a purely dynamically typed language, or in a gradually typed
language that does not insert casts (such as TypeScript), a runtime
type error will occur deep inside the library, perhaps not even in
the moment function itself but inside some other function it calls,
such as mean. It is then challenging for the library’s client to
fix the problem, since they may not know the precise cause nor
even if it is in fact their fault, rather than a bug in the library.
On the other hand, if library authors make use of gradual typing
to annotate the parameter types of their functions, then the error
can be localized and caught before the call to moment, resulting in
easier debugging. The following shows the moment function with
annotated parameter and return types.

def moment(inlist: List(Float), m: Int)->Float:
...

labels ` type variables X
base types B ::= Int | String | Float | Bool | Bytes

types T ::= Dyn | B | X | List(T ) |
Dict(T, T ) | Tuple(T ) |
Set(T ) | Object(X){`:T} |
Class(X){`:T}
Function(P, T )

parameters P ::= Arb | Pos(T ) | Named(`:T )

Figure 1. Static types for Reticulated programs

With this change, the runtime error points to the call to moment on
line 2, where an implicit cast from Dyn to List(Float) occurred.
A programmer using a library with gradual types need not use static
types themselves — they gain the benefit of early localization and
detection of errors even if they continue to write their own code in
a dynamically typed style.

Casts on base values like integers and booleans are straightfor-
ward — either the value is of the expected type, in which case the
cast succeeds and the value is returned, or the value is not, in which
case it fails. However, casts on mutable values, such as lists, or
higher-order values, such as functions and objects, are more com-
plex. For mutable values, it is not enough to verify that the value
meets the expected type at the site of the implicit cast because the
value can later be mutated to violate the cast’s target type. We dis-
cuss this issue in detail in Section 2.2.

Contributions
• We develop Reticulated Python, a source-to-source translator

that implements gradual typing on top of Python 3.
• In Section 2, we discuss Reticulated’s type system and discuss

three dynamic semantics for mutable objects, one of which is
based on proxies and two new approaches: one based on use-
site checks and one in which objects become monotonically
more precisely typed.

• In Section 3, we carry out several case studies of applying
gradual typing to third-party Python programs.

• In Section 4, we evaluate the source-to-source translation ap-
proach and consider lessons for other implementers of gradually-
typed languages.

2. The Reticulated Python Designs
We describe three language designs for Reticulated Python: guarded,
transient, and monotonic. The three designs share the same static
type system (Section 2.1) but have different dynamic semantics
(Sections 2.2.1, 2.2.2, and 2.2.3).

2.1 Static semantics
From a programmer’s perspective, the main way to use Reticulated
is to annotate programs with static types. Source programs are
Python 3 code with type annotations on function parameters and
return types. For example, the definition of a distance function
could be annotated to require integer parameters and return an
integer.

def distance(x: Int, y: Int)-> Int:
return abs(x - y)

In Python 3, annotations are arbitrary Python expressions that
are evaluated at the function definition site but otherwise ignored.
In Reticulated, we restrict the expressions that can appear in anno-
tations to the type expressions shown in Figure 1 and to aliases for



Γ ` class X: `k:Tk = ek : Class(X){`k:Tk}

Γ ` e : Class(X){`k:Tk} 6 ∃k. init = `k

Γ ` e() : Object(X){`k:bind(Tk)}

Γ ` e : T T = Object(X){`:T`, . . .}
Γ ` e.` : T`[X/T ]

Figure 2. Class and object type rules.

object and class types. The absence of an annotation implies that
the parameter or return type is the dynamic type Dyn.

The type system is primarily based on the first-order object cal-
culus of Abadi and Cardelli [1] with several important differences
discussed in this section.

2.1.1 Function types
Reticulated’s function parameter types have a number of forms, re-
flecting the ways in which a function can be called. Python function
calls can be made using keywords instead of positional arguments;
for example, the distance function can be called by explicitly
setting x and y to desired values like distance(y=42, x=25).
To typecheck calls like this, we include the names of parameters
in our function types using the Named parameter specification, so
in this case, the type of f is Function(Named(x:Dyn, y:Dyn),
Dyn). On the other hand, higher-order functions most commonly
call their function parameters using positional arguments, so for
such cases we provide the Pos annotation. For example, the map
function would take a parameter of type Function(Pos(Dyn),
Dyn); any function that takes a single parameter may then be passed
in to map, because a Named parameters type is a subtype of a Pos
when their lengths and element types correspond. Function types
with Arb (for arbitrary) parameters can be called on any form of
argument.

2.1.2 Class and object types
Reticulated includes types for both objects and classes, because
classes are also runtime values in Python. Both of these types are
structural, mapping attribute names to types, and the type of an
instance of a class may be derived from the type of the class itself.

As an example of class and object typing, consider the following
example:

1 class 1DPoint:
2 def move(self:1DPoint, x:Int)->1DPoint:
3 self.x += x
4 return self
5 p = 1DPoint()

Here the variable 1DPoint has the type

1 Class(1DPoint){ move : Function(Named(self:1DPoint, x:
Int),1DPoint) }

The occurrence of 1DPoint inside of the class’s structural type
is a type variable bound to the type of an instance of 1DPoint.
Figure 2 shows Reticulated’s typing rule for class definitions in
the simple case where the class being defined has no superclass;
classes that do have superclasses with static types also include
the superclasses’ members in their own type, and check that their
instances’ type is a subtype of that of their superclasses.

Values with class type may be invoked as though they were
functions, as shown in the second rule of Figure 2. In the above
example, p has type

Object(1DPoint) {move:Function(Named(x:Int),1DPoint)}

This type is derived from the class type of 1DPoint by removing
the self parameter of all the functions in the class’ type. The type
parameter 1DPoint represents the self type. We use the bind meta-
function to convert function definitions from unbound form —
with an explicit self-reference as their first parameter — to a form
with this parameter already bound and thus invisible. If the self-
referential type parameter X in an object type is not used in the
types of any of its members we write Object{...} instead of
Object(X){...}.

The type system also includes a rule to handle the situation
when the class defines an init method, in which case Retic-
ulated checks that the arguments of the construction call site match
the parameters of init .

In Python, programmers can dynamically add properties to ob-
jects at will. In recognition of this, Reticulated’s object types are
open with respect to consistency — two object types are consistent
if one type has members that the other does not and their com-
mon members are consistent; in other words, implicit downcasts
on width subtyping are allowed and checked at runtime. This can
be seen in line 3 of the above example: x is not part of the type of a
1DPoint, so when x is accessed, an implicit downcast on self oc-
curs to check that x exists. In this sense, Reticulated’s object types
are similar to the bounded dynamic types of Ina and Igarashi [16],
except that their approach is appropriate for nominal type systems
while our open objects are appropriate for structural typing.

Programmers specify that object instances should have stati-
cally typed fields by using the @fields() decorator and supplying
the expected field types. For example,

1 @fields({’x’:Int, ’y’:Int})
2 class 2DPoint:
3 def __init__(self:2DPoint):
4 self.x = 42
5 self.y = 21
6 2DPoint().x

This class definition requires that an instance of 2DPoint have
Int-typed fields named x and y; this information is included in
the type of an instance of 2DPoint, so the field access at line 6 has
type Int. If 2DPoint’s constructor fails to produce an object that
meets this type, a runtime cast error is raised.

Lists, tuples, sets, and dictionaries have special, builtin types
but they are also given object types that are used when they are the
receiver of a method call.

2.1.3 Recursive type aliases
Structural object types are an appropriate match for Python’s duck
typing, but structural types can be rather verbose. To ameliorate
this problem, we let class names be aliases for the types of their
instances, as inferred from the class definition. Such aliases are
straightforward when the aliased type only contains function and
base types; however, obtaining the correct type for a given alias
becomes more interesting in mutually recursive classes such as the
following.

1 class A:
2 def foo(self, a:A, b:B):
3 pass
4 class B:
5 def bar(self, a:A, b:B):
6 pass

In the above code, A and B are type aliases when they appear in the
annotations of foo and bar. For the remainder of this example, we
use Â and B̂ to represent type aliases and the unadorned A and B as
bound type variables. The task here is to determine the appropriate



Obj(Y ){`i:Ti}[X̂/T ] −→ Obj(Y ){`i:Ti[X̂/T ′]}
where T ′ = T [Ŷ /Y ]

X̂[X̂/T ] −→ T

List(T1)[X̂/T2] −→ List(T1[X̂/T2])
. . .

Figure 3. Alias substitution

types to substitute for Â and B̂ in the type annotations of foo and
bar. To arrive at these types, we start with the mapping

[Â 7→ Object(A){foo:Function([Â, B̂], Dyn)},
B̂ 7→ Object(B){bar:Function([Â, B̂], Dyn)}]

The right-hand side of each pair in this mapping then has all
the other pairs substituted into it using the substitution algorithm
in Figure 3. This substitution repeats until it reaches a fixpoint, at
which point all type aliases will have been replaced by object types
or type variables. In the case of this example, the final mapping is Â 7→ Object(A){foo:Function([A,

Object(B){bar:Function([A, B], Dyn)}],
Dyn)}


B̂ receives a similar mapping.

2.1.4 Types of Literals
One of the objectives of Reticulated is to achieve at least the
option of full backwards-compatibility with untyped Python code
— that is, if a normal Python program is run through Reticulated,
we would like the result to be observationally identical to what
it would be if it were run directly. 2 This goal leads to certain
surprising design choices, however. For example, it is natural to
expect that an integer literal have type Int. However, that would
lead us to statically reject a program like 42 + ’hello world’.
This is a valid Python program in that it produces a result when
evaluated (an exception), and the programmer has not “opted in” to
static typing by using type annotations. So, to maintain maximal
backwards compatibility with Python, even ridiculous programs
like this cannot be rejected statically! Therefore we offer a flag in
the Reticulated system to switch between giving integer literals the
type Dyn or Int, and similarly for other kinds of literals. In Section
3 we discuss the practical effect of this choice.

2.1.5 Load-time typechecking
Reticulated’s type system is static in the sense that typechecking
is a syntactic operation, performed on a module’s AST. However,
when a program first begins to run, it is not always possible to
know which modules will be imported and executed. Reticulated’s
typechecking, therefore, happens at the load time of individual
modules. This can mean that a static type error is reported after
other modules of a program have already run.

Reticulated does attempt to perform static typechecking ahead
of time: when a module is loaded, it tries to locate the correspond-
ing source files for any further modules that need to be loaded, type-
check them, and import the resulting type information into the type
environment of the importing module. This is not always possible,
however — modules may be imported at runtime from locations
not visible to Reticulated statically. In general, programmers can-
not count on static type errors to be reported when a program starts
to execute, only when the module with the error is loaded.

2 There are some very few places where this is violated: for example, if a
Python function has pre-existing annotations that are syntactically identical
to our type annotations.

2.1.6 Dataflow-based type inference
Python 3 does not provide syntax for annotating the types of local
variables. We might use function decorators or comments for this
purpose, but we instead choose to infer types for local variables. We
perform a simple intraprocedural dataflow analysis [17] in which
each variable is given the type that results from joining the types
of all the values assigned to it, a process which we repeat until a
fixpoint is reached. For example, consider the function

1 def h(i:Int):
2 x = i; y = x
3 if random():
4 z = x
5 else: z = ’hello world’

We infer that x and y have type Int, because the expressions on the
right-hand sides have that type, and that z has type Dyn, which is
the join of Int and Str. This join operation is over the subtyping
lattice with Dyn as top from Siek et al. [29], and always results in a
type that can be safely casted to.

2.2 Dynamic semantics
Using the Reticulated framework, we explore three different dy-
namic semantics for casts. The intent behind each semantics is to
prevent runtime values from observably inhabiting identifiers with
incompatible types. Consider the following example in which a
strong (type-changing) update occurs to an object to which there
is an outstanding statically-typed reference.

1 class Foo:
2 bar = 42
3 def g(x):
4 x.bar = ’hello world’
5 def f(x:Object({bar:Int}))->Int:
6 g(x)
7 return x.bar
8 f(Foo())

Function f passes its statically-typed parameter to the dynamic-
ally-typed g, which updates the bar field to a string. Function f
then accesses the bar field, expecting an Int.

We could choose to allow such type errors — this is the ap-
proach taken by TypeScript [25] and described by Siek and Taha
[26]. However, we prefer to detect inconsistencies between the
static types specified by the program and the runtime values. In
this section, we discuss the design of our three dynamic semantics
for casts, which perform this checking in very different ways.

2.2.1 The guarded dynamic semantics
The guarded semantics uses casts to detect and report runtime type
errors. When using this semantics, Reticulated inserts casts into
programs where implicit coercions occur, such as at function call
sites (like line 6 above) and field writes. The inserted cast — which
is a call to a Python function which performs the cast — is passed
the value being casted as well as type tags for the source and target
of the cast, plus an error message and line number that will be
reported if and when the cast fails (we elide this error information
in our examples). For example, our above program will have casts
inserted as follows:

3 def g(x):
4 cast(x, Dyn, Object({bar:Dyn})).bar = ’hello world’
5 def f(x:Object({bar:Int}))->Int:
6 g(cast(x, Object({bar:Int}), Dyn))
7 return x.bar
8 f(cast(Foo(), Object({bar:Dyn}), Object({bar:Int})))

Casts between Dyn and base types will simply return the value itself
(if the cast does not fail — if it does, it will produce a CastError



ref v | µ −→ a | µ, a 7→ v
where a 6∈ dom(µ)

cast(a, ref T1, ref T2) | µ −→ a::ref T1⇒ref T2 | µ
!a | µ −→ µ(a) | µ

!(v::ref T1⇒ref T2) | µ −→ cast(!v, T1, T2) | µ

Figure 4. Reduction rules for guarded references.

exception), but casts between function or object types produce a
proxy. This proxy contains the error message and line number
information provided by the static system for this cast, which serves
as blame information if the cast’s constraints are violated later on.
Guarded proxies do not just implement individual casts — they
represent compressed sequences of casts using the threesomes of
Siek and Wadler [28]. In this way, proxies do not build up on
themselves, layer after layer — a proxy is always only one step
away from the actual, underlying Python value.

Method calls or field accesses on proxies redirect to a lookup on
the underlying object, the result of which is casted from the part of
the source type that describes the member’s type to the same part
of the meet type, and then from the meet type to the final target
type. This process occurs in reverse for member writes. Proxied
functions, when invoked, cast the parameters from target to meet to
source, and then cast results from source to meet to target. In the
above example, when the field write occurs at line 4, the proxy
will attempt to cast ’hello world’ to Int, which is the most
precise type that the object being written to has had for bar in its
sequence of casts. This cast fails, and a cast error is reported to the
programmer. Figure 4 shows how this process proceeds when using
guarded references in a core calculus similar to that of Herman et al.
[15].

One important consequence of the guarded approach is that
casts do not preserve object identity — that is, if the expression

x is cast(x, Dyn, Object({bar:Int}))

were added to function g in the example above, it would return
False. Similarly, the Python runtime type is not preserved: the
type of a proxy is Proxy, not the type of the underlying object,
and this information is observable to Python programs that invoke
the builtin type function on proxies. However, the proxy class is
a subclass of the runtime Python class of the underlying value,3

instance checks generally return the same result with the bare value
as they do with the proxied value. In our case studies in Section 3,
we evaluate the consequences of this issue in real-world code.

2.2.2 The transient dynamic semantics
In the transient semantics, a cast checks that the value has a type
consistent with the target type of the cast, but it does not wrap the
value in a proxy. Returning to our running example, just as in the
guarded semantics, a cast is inserted around the argument in the
call to function f:

8 f(cast(Foo(), Object({bar:Dyn}), Object({bar:Int})))

However, in the transient system, this cast just checks that
Foo() is an object, that it has a member named bar, and that bar
is an Int. It then returns the object. The cast’s effect is therefore
transient; nothing prevents the field update at line 4. To prevent f
from returning a string value, a check is instead inserted at the point
where f reads from bar:

5 def f(x:Object({bar:Int}))->Int:

3 Unless the underlying value’s class is non-subclassable, such as bool or
function.

6 g(cast(x, Object({bar:Int}), Dyn))
7 return check(x.bar, Int)

This check attempts to verify that x.bar has the expected type,
Int. Because the call to g mutates x.bar to contain a string, this
check fails, preventing an uncaught type error from occurring. In
addition, it is possible that f could be called from a context in which
its type is not visible, if it was casted to type Dyn for example.
In this case, the call site cannot check that the argument being
passed to f is a List(Int), and unlike the guarded system, there
is no proxy around f to check that the argument has the correct
type either. Therefore, f needs to check that its parameters have
the expected type in its own context. Thus, the final version of the
function becomes

5 def f(x:Object({bar:Int}))->Int:
6 check(x, Object({bar:Int}))
7 g(cast(x, Object({bar:Int}), Dyn))
8 return check(x.bar, Int)

In general, checks are inserted at the use-sites of variables with
non-base types and at the entry to function bodies and for loops.
Checks are used in these circumstances to verify that values have
the type that they are expected to have in a given context before
operations occur that may rely on that being the case.

Figure 5 shows an excerpt of the has type function used within
transient casts. Some values and types cannot be eagerly checked
by has type function, however, such as functions — all that Retic-
ulated can do at the cast site is verify that a value is callable, not
that it takes or returns values of a particular type. Function types
need to be enforced by checks at call sites. Moreover, even when
eager checking is possible, the transient design only determines that
values have their expected types at time of the cast site, and does
not detect or prevent type-altering mutations from occurring later
— instead, such mutations are prevented from being observable
by use-site checks. Figure 6 illustrates this with several typing and
evaluation rules from a core calculus for the transient system using
references. Note that in these semantics we do not even give a type
to references beyond ref — type information about the contents of
a reference is instead encoded in the syntax of the dereference. 4

Transient and Dart’s checked mode The transient semantics for
Reticulated is reminiscent of Dart’s checked mode [12], in which
values are checked against type annotations (which are otherwise
ignored at runtime). However, Dart’s checks are performed under
different circumstances than Reticulated’s, and these choices cause
Dart’s type system to be unsound even when checked. Consider the
following Dart program:

4 Interested readers may find the full calculus, including a proof
of type safety, at http://homes.soic.indiana.edu/mvitouse/
transient.pdf.

1 def has_type(val, ty):
2 if isinstance(ty, Dyn):
3 return True
4 elif isinstance(ty, Int):
5 return isinstance(val, int)
6 elif isinstance(ty, Object):
7 return all(hasattr(val, member) and has_type(

getattr(val, member), ty.member_type(member))
for member in ty.members)

8 elif isinstance(ty, Function):
9 return callable(val)

10 elif ...

Figure 5. Definition for the has type function.



Γ;E ` e : T

Γ;E ` ref e : ref

Γ;E ` e : ref

Γ;E ` check(!e, T ) : T

ref v | µ −→ a | µ, a 7→ v where a 6∈ dom(µ)
check(!a, T ) | µ −→ µ(a) | µ if ∅; dom(µ) ` µ(a):T
check(!a, T ) | µ −→ error | µ otherwise

Figure 6. Typing and reduction rules for transient references.

1 void g(dynamic foo) {
2 foo[0] = "hello world";
3 }
4 void f(List<int> foo) {
5 g(foo);
6 print(foo[0]);
7 }
8 main() {
9 List<dynamic> foo = new List<dynamic>();

10 foo.add(42);
11 f(foo);
12 }

Dart does not check the value that results from the index at line
6, unlike transient Reticulated . Therefore “hello world” will be
printed despite the presence of a string in a list of integers.

Additionally, in Dart, object updates are checked against the
annotated field types of the underlying object, rather than the type
of the reference to the object in the scope of the update, causing the
following program to fail.

1 class Foo {
2 int bar = 42;
3 }
4 void f(dynamic a) {
5 a.bar = "hello world";
6 }
7 main() {
8 f(new Foo());
9 }

In transient Reticulated, the equivalent program would run without
error until the bar field of the object is read in a context where
it is expected to be an int. Dart’s object update checks therefore
behave more like guarded than transient.

2.2.3 The monotonic dynamic semantics
Like the transient semantics, the monotonic system avoids using
proxies, but rather than using transient checks, the monotonic ap-
proach preserves type safety by restricting the types of objects
themselves. In this approach, when an object flows through a cast
from a less precise (closer to Dyn) type to a more precise one,
the cast has the effect of locking the type of the object at this
more precise type. Objects store a type for each of their fields;
this type is always equally or more precise than any of the types
at which the field has been viewed. For example, if an object has
had references to it with types {’foo’:Tuple(Int, Dyn)} and
{’foo’:Tuple(Dyn, Int)}, the object will record that ’foo’
must be of type Tuple(Int, Int), because a value of this type
is consistent with both of the references to it.

When field or method updates occur, the newly written value is
cast to this precise type. Back to our ongoing example:

3 def g(x):
4 cast(x, Dyn, Object({bar:Dyn})).bar = ’hello world’
5 def f(x:Object({bar:Int}))->Int:
6 g(cast(x, Object({bar:Int}), Dyn))
7 return x.bar
8 f(cast(Foo(), Object({bar:Dyn}), Object({bar:Int})))

Under the monotonic semantics, casts are inserted at the same
places as they are in guarded, but their effects are different. When
the newly created object goes through the cast at line 8, the object
is permanently set to only accept values of type Int in its bar field.
When g attempts to write a string to the object at line 4, the string is
cast to Int, which fails. This cast is performed by the object itself,
not by a proxy — the values of x in f and g are the same even
though they appear at different types.

The monotonic system’s approach of permanently, monotoni-
cally locking down object types results is one clear difference from
guarded and transient — it is not possible to pass an object from
untyped code into typed code, process it, and then treat it as though
it is once again dynamically typed. On the other hand, monotonic’s
key guarantee is that the type of the actual runtime value of an ob-
ject is at least as precise as any reference to it. Because of this,
when a reference is of fully static type, the value of the object has
the same type as the reference, and no casts or checks are needed
when a field is accessed. Even if the reference is of a partially dy-
namic type, only an upcast needs to occur.

Figure 7 shows an excerpt of the cast insertion and evaluation
rules for a calculus with monotonic references. This shows that
references whose types are entirely static may be directly deref-
erenced, and that the requirement of monotonicity is enforced by
tracking the most precise type a cell has been casted to; the type is
stored as part of the cell on the heap.5

2.2.4 Runtime overhead in statically-typed code
Readers may have noted that both the guarded and transient se-
mantics impose runtime overhead on statically-typed code due
to checks and casts, whereas the monotonic semantics imposes
no runtime overhead on statically-typed code. With the guarded
and transient semantics, avoiding these overheads is difficult in
an implementation based on source-to-source translation, but if
the underlying language offers hooks that enable optimizations
based on type information, Reticulated’s libraries could utilize such
hooks. This is a promising approach in the PyPy implementation of
Python, where an implementation of gradual typing could enable
optimizations in the JIT, and in Jython, where an implementation
could utilize bytecodes such as invokedynamic to reduce overhead.

5 A full semantics and proof of type safety for a monotonic calculus
is available at http://wphomes.soic.indiana.edu/jsiek/files/
2013/06/mono-ref-july-2014.pdf

heaps µ ::= ε | µ, a 7→ (v, T )

Γ; Σ ` e ; e′ : ref T T static
Γ; Σ `!e ;!e′ : T

Γ; Σ ` e ; e′ : ref T ¬T static
Γ; Σ `!e ;!e′@T : T

ref v@T | µ −→ a | µ, a 7→ (v, T )
where a 6∈ dom(µ)

!a@T2 | µ −→ cast(v, T1, T2) | µ
where µ(a) = (v, T1)

!a | µ −→ fst(µ(a)) | µ
cast(a, ref T1, ref T2) | µ −→ a | µ, a 7→ (v′, T4)

where µ(a) = (v, T3),
T4 = T2 t T3,
v′ = cast(v, T3, T4)

Figure 7. Cast insertion and reduction rules for monotonic refer-
ences.



3. Case Studies and Evaluation
To evaluate the design of Reticulated’s type system and runtime
systems, we performed case studies on existing, third-party Python
programs. We annotated these programs with Reticulated types and
ran them under each of our semantics. We categorized the code that
we were unable to type statically and identified several additional
features that would let more code be typed. We discovered several
situations in which we had to modify the existing code to interact
well with our system, and we also discovered several bugs in these
programs in the process. The annotated case studies that we used
in this experiment are available at http://bit.ly/1rqSvQM.

3.1 Case study targets
Python is a very popular language and it is used for many appli-
cations, from web backends to scientific computation. To represent
this wide range of uses, we chose several different code bases to
use as case studies for Reticulated.

3.1.1 Statistics library
We chose the Harvard neuroscientist Gary Strangman’s statistics
library6 as a subject of our Reticulated case study as an example
of the kind of focused numerical programs that are common in
scientific Python code. The stats.py module contains a wide
variety of statistics functions and the auxiliary pstat.py module
provides list manipulation functions.

To prepare them for use with Reticulated, we removed the
libraries’ dependence on the external Numeric array library. This
had the effect of reducing the amount of “Pythonic” dynamicity that
exists in the libraries — prior to our modification, two versions of
most functions existed, one for Numeric arrays and one for native
Python data structures, and a dispatch function would redirect any
call to the version suited to its parameter. Although we removed
this dynamic dispatch from these modules, this kind of behavior is
considered in our next case study. We then simply added types to
the libraries’ functions based on their operations and the provided
documentation, and replaced calls into the Python math library
with calls into statically typed math functions.

3.1.2 CherryPy
CherryPy7 is a lightweight web application framework written for
Python 3. It is object-oriented and makes heavy use of callback
functions and dynamic dispatch on values. Our intent in study-
ing CherryPy was to realistically simulate how library developers
might use gradual typing to protect against bad user input and re-
port useful error messages. To accomplish this, we annotated sev-
eral functions in the CherryPy system with types. We tried to anno-
tate client-facing API functions with types, but in many cases it was
not possible to give specific static types to API functions, for rea-
sons we discuss in Section 3.2.6. In these situations, we annotated
the private functions that are called by the API functions instead.

3.1.3 SlowSHA
We added types to Stefano Palazzo’s implementation of SHA1/
SHA2.8 This is a straightforward 400 LOC program that provides
several SHA hash algorithms implemented as Python classes.

3.2 Results
By running our case studies in Reticulated, we made a number of
discoveries about both our system and the targets of the studies

6 http://www.nmr.mgh.harvard.edu/Neural Systems Group/gary
/python.html
7 http://www.cherrypy.org/
8 http://code.google.com/p/slowsha/

themselves. We discovered two classes of bugs that exist in the
target programs which were revealed by the use of Reticulated.
We also found several deficiencies in the Reticulated type system
which need to be addressed, and some challenges that the guarded
system in particular faces due to its use of proxies: the CherryPy
case study relies on checks against object identity, and the inability
of the guarded semantics to preserve object identity under casts
causes the program to crash.

3.2.1 Reticulated reveals bugs
We discovered two potential bugs in our target programs by running
them with Reticulated.

Missing return values Below is one of the functions from
stats.py that we annotated, shown post-annotation:

1 def betacf(a:Float,b:Float,x:Float)->Float:
2 ITMAX = 200
3 EPS = 3.0e-7
4 # calculations elided...
5 for i in range(ITMAX+1):
6 # more calculations elided...
7 if (abs(az-aold)<(EPS*abs(az))):
8 return az
9 print(’a or b too big, or ITMAX too small in Betacf.

’)

This function only conditionally returns a value; if the inputs are
such that the for loop executes more than ITMAX+1 times, the func-
tion “falls off” the end of its definition. In Python this has the effect
of returning the unitary None value. This falling-off behavior poses
a problem when betacf is called by other functions in the library,
which do not check if the result is None. None of the test cases
supplied by the developer trigger this bug, but it could be triggered
by client code. This behavior could cause a confusing error on the
caller’s side, or even worse, it could continue to execute, likely pro-
ducing an incorrect result. The printed error message could easily
be missed by the programmer, especially since stats.py is a li-
brary, and it may be used by clients unfamiliar with the design of its
functions. By annotating betacf with the static return type Float,
we force the function to always either return a float value, or to
raise an exception. In this case, the appropriate fix is to replace the
final line with something like

9 raise Exception(’a or b too big, or ITMAX too small
in Betacf.’)

which Reticulated’s type system will accept.

Parameter name mismatch Reticulated’s type system is designed
to guarantee that when one class is a subclass of another, the type
of an instance of the subclass is a subtype of the type of an instance
of the superclass. Additionally, as we discuss in Section 2.1.1,
function types can include the names of their parameters so that
calls with keyword arguments may be typed.

These properties of Reticulated cause it to report a static type
error when a subclass overrides a superclass’s method without
using the same parameter names. We regard this situation as a latent
bug in a program that exhibits it, as we illustrate below:

1 class Node:
2 def appendChild(self, node):
3 # ...
4 class Entity(Node): # subclass of Node
5 def appendChild(self, newChild):
6 # ...

If the programmer expects that any instance nd of Node or its
subclasses can be used in the same fashion, then they expect that

7 nd.appendChild(node=Node())



will always succeed. However, if node is actually an instance of
Entity, this call will result in a Python TypeError. This is an easy
mistake to make, and we have found this pattern in multiple places
— even within the official Python Standard Library itself, which
is where this example arises.9 We have not encountered situations
where this potential bug actually results in a runtime error; it would
be unusual for node/newChild to be used as a keyword argument.

3.2.2 The Reticulated type system in practice
The choice of whether or not to include typed literals, as discussed
in Section 2.1.4, greatly affects the behavior of math-heavy code.
Enabling typed literals requires some code to be slightly changed,
but lets substantially more code be entirely statically typed.

Invariant mutable types and typed literals mix poorly. The statis-
tics libraries we studied frequently intermingle integers and floating
point values, including within lists, as in this example:

1 def var (inlist:List(Float))->Float:
2 ...
3 mn = mean(inlist)
4 deviations = [0]*len(inlist)
5 for i in range(len(inlist)):
6 deviations[i] = inlist[i] - mn
7 return ss(deviations)/float(n-1)

In this function, the deviations variable is initialized to be a
list of integer zeros. Our type inferencer only reasons about as-
signments to variables, such as that at line 4, not assignments
to attributes or elements, such as that at line 6. Therefore, when
we let number literals have static types, our type inference algo-
rithm will determine that the type of deviations is List(Int).
However, float values are written into it at line 6, and at line 7
it is passed into the function ss, which we have given the type
Function([List(Float)],Float). The Reticulated type sys-
tem detects this call as a static type error because list element types
are invariant under subtyping (though not under consistency); our
subtyping rules contain the only the rule

Γ ` List(T1) <: List(T1)

for lists. Even though we do define Int as a subtype of Float,
neither the type List(Int) nor List(Float) is appropriate for
deviations as written. In such situations, we can simply rewrite
the code to only use float values; in this case we change line 4 to

4 deviations = [0.0]*len(inlist)

Typed literals and type inference allow math to be typed. When
typed literals are enabled, and any necessary edits to the source
are made as above, our approach to type inference allows many of
the calculation-heavy statistics functions that we studied to become
almost entirely statically typed, with few or no casts to or from Dyn.
For example, the sum-of-squares function behaves extremely well:

1 def ss(inlist: List(float)) ->float:
2 _ss = 0
3 for item in inlist:
4 _ss = (_ss + (item * item))
5 return _ss

This code above actually shows this function after cast insertion —
no casts have been inserted at all,10 and the computations here occur

9 In the Python 3.2 standard library, in xml/minidom.py.
10 Using the guarded semantics with check insertion disabled. Transient
checks would be inserted to check that inlist is a list of floats at the entry
to the function, and that item is a Float at the beginning of each iteration
of the loop.

entirely in typed code. Overall, when typed literals are enabled,
48% of the binary operations in stats.py occur in typed code,
compared to only 30% when literals are assigned the dynamic
type. Reticulated, as a test-bed for gradual typing in Python, is
not currently able to make use of this knowledge, but a system
that does perform type optimizations would be able to execute
the mathematical operations in this function entirely on the CPU,
without the runtime checks that Python typically must perform.

3.2.3 Cast insertion with open structural object types
In general, structural objects and object aliases worked well for our
test cases. However, we discovered one issue that arose in all of
our runtime systems because our rules for cast insertion on object
accesses made an assumption that clashed with accepted Python
patterns. One of our rules for cast insertion is

Γ ` e ; e′ : T T = Object(X){`i:Ti}
∀i. `i 6= x

Γ ` e.x ; cast(e′, T, Object(X){x : Dyn}).x : Dyn

That is, when a program tries to read an object member that does
not appear in the object’s type, the object is cast to a type that
contains that member at type Dyn. This design clashes with the
common Python pattern below:

1 try:
2 value.field
3 # do something
4 except AttributeError:
5 # do something else

If the static type of value does not contain the member field,
Reticulated casts it to verify at runtime that the field exists. This
implicit downcast, allowed because of our open design for object
types, causes this program to typecheck statically even if the static
type of value does not contain field — without open object types
this program would not even be accepted statically. However, even
with this design, this program still has a problem: if and when that
cast fails, a cast error is triggered, which would not let the program
continue down the except branch as the programmer intended. In
order to support the expected behavior of this program, we design
our cast errors to be caught by the try/except block. Cast errors
are implemented as Python exceptions, so by letting any cast errors
generated by this particular kind of object cast actually be instances
of a subclass of AttributeError, we anticipate the exception that
would have been thrown without the cast. This specialized cast
failure is then caught by the program itself if it was designed to
catch AttributeErrors. Otherwise, the error is still reported to
the programmer as a cast error with whatever blame information
is supplied. We use a similar solution for function casts, since
programs may call values if they were functions and then catch
resulting exceptions if they are not.

3.2.4 Monotonic and inherited fields
The basic principle behind the monotonic approach is that when
objects are cast to a more precise type, any future values that may
inhabit the object’s fields must meet this new precise type as well.
However, it is not always clear where this “locking down” should
happen. Field accesses on Python objects can return values that are
not defined in the object’s local dictionary but rather in the object’s
class or superclasses. Therefore, when a monotonic object goes
through a cast that affects the type of a member that is defined in
the object’s class hierarchy, we have two choices: either we can
downcast and lock that member in its original location, or we can
copy it to the local object and lock it there. Both designs have
problems: the former will cause all instances of the class to behave
as though they had gone through the cast, while the latter causes



class attributes to be eagerly copied into objects, damaging space
efficiency and blinding instances to mutation of class attributes.

Initially we chose the former behavior, monotonically locking
down fields and methods in their original locations. However, ap-
plying this behavior to lists in the statistics library revealed an ad-
ditional problem: it is impossible to monotonically downcast and
lock members of builtin classes, such as lists. Even if we had been
able to do so, however, we would have made it so that there could
only ever be one type of list in any Reticulated program. Currently,
the monotonic system copies class fields to the dictionary of the
casted object, but we intend to also provide the option, on a per-
member basis as part of the type, to instead lock members in-place
when that behavior is explicitly desired.

3.2.5 Challenges for guarded
The guarded design for gradually-typed Python causes several
problems that do not occur in the transient system, because proxies
do not preserve object or type identity. We discovered that the loss
of object identity was a serious problem that prevented our Cher-
ryPy case study from even running successfully, and that the loss
of type identity meant that we had to modify the statistics library
case study for it to run.

Object identity is a serious issue. . . We were aware from the out-
set that our design for the guarded system does not preserve object
identity. However, it was unclear how significant of a problem this
is in practice. In our case studies, object identity was not relevant in
the statistics library, but identity checks are used in CherryPy in a
number of locations. In particular, there are places where the wrong
outcome from an identity check causes an object to be incorrectly
initialized, as in the following:

1 class _localbase(object):
2 def __new__(cls, *args, **kw):
3 ...
4 if args or kw and (cls.__init__ is object.__init__

):
5 raise TypeError("Initialization arguments are

not supported")
6 ...

If the parameter cls is proxied, then cls. init will be as well.
In that case, the identity check at line 4 will return False if the
underlying value is object. init . The TypeError exception
will not be raised, and confusing errors may occur later.

In many places where identity testing is used simply replacing
is with == would have the same effect and be compatible with the
use of proxies. However, object identity issues also arose from calls
into the Python Standard Library, causing unpredictable, incorrect
behavior. Python’s pickling library is unable to correctly serialize
proxied objects, and file reads on proxied file objects occasionally
fail for reasons we have not yet been unable to determine. The
end result of this was that the CherryPy webserver was unable to
run without error under the guarded semantics. We would need to
change the pickling and file IO libraries at minimum to get the
CherryPy webserver to work.

. . . and type identity sometimes is. Although the statistics library
never checks object identity, we found 28 static code locations
where it uses the type function to get a value’s Python type. At
these sites, unexpected behavior can arise because our proxies’
Python types are not the same as the Python types of their underly-
ing objects. Fortunately, these situations only required minor edits
to resolve. One problematic location was the following code from
pstat.py:

1 def abut (source, *args)->List(Dyn):
2 if type(source) not in [list, tuple]:

3 source = [source]
4 ...

If the value of source is a proxy, then the call to type on line 2
will return the Proxy class, resulting in source being wrapped in a
list even if the underlying value already is a list. This can be solved
by providing a substitute type function that is aware of proxies, or
by rewriting this line of code to use isinstance:
2 if not any(isinstance(source, t) for t in [list,

tuple]):

We arrange for the class of a proxy to be a subclass of the class of
the underlying value, and with this modification, we were able to
run the statistics library under the guarded semantics.

3.2.6 Classifying statically untypable code
In many circumstances we found functions that could not be given
a fully static type. This is, of course, to be expected — Python is
a dynamic language and many Python programs are written in an
idiom that depends on dynamic typing. Wisely-chosen extensions
of Reticulated’s static type system would let certain classes of these
currently-untypable functions be statically checked, but sometimes
the appropriate thing to do is just use Dyn. We classify these
situations, discuss how frequently they arise, and consider which
features, if any, would allow them to be assigned static types.

Dynamically typed parameters may act like generics. One defi-
ciency of Reticulated’s type system is its lack of support for gener-
ics. Dynamic typing lends itself well to a generic style of pro-
gramming, and thus it is no surprise that many of the functions
and portions of code that we could not assign static types to would
by much more typable if our type system provided generics. Near-
future work will involve implementing such types, possibly as an
adaptation of Ahmed et al. [3].

Dispatch occurs on Python runtime types. The below code snip-
pet — the definition of the update method invoked in the previous
example — shows a pattern used extensively in CherryPy which is
difficult to type precisely:
1 def update(self, config):
2 if isinstance(config, string):
3 config = Parser().read(config).as_dict()
4 elif hasattr(config, ’read’):
5 config = Parser().readfp(config).as_dict()
6 else:
7 config = config.copy()
8 self._apply(config)

(This snippet actually combines together two CherryPy functions
for clarity.) The method update may take any of three kinds of
values: a string, a value with the attribute “read” (contextually, a
file), or something else, but whatever it initially is, it is eventually
converted into a value which is passed into the apply method.

It is clear that config cannot be annotated with a single precise
type — the logic of the program depends on the fact that config
may be any of several disparate types. We could possibly achieve
some kind of static typing by introducing sum types into the lan-
guage, or by using the occurrence typing of Tobin-Hochstadt and
Felleisen [34]. In the absence of such techniques we can still per-
form useful checking by annotating the apply function instead,
shown below:
9 def _apply(self, config:Dict(Str, Dyn))->Void:

10 ...

When we declare that this function accepts only config values that
are dictionaries with string keys, a cast will be inserted at the call to
apply in update at line 8. This ensures that, no matter what the

value passed in to update was, the one handed off to apply will
have the correct type.



Data structures can be heterogeneous. Dynamic typing enables
the easy use of heterogeneous data structures, which naturally can-
not be assigned static types. In our case studies, we did not see
significant use of heterogeneous lists, other than ones that contain
both Ints and Floats as we discuss in Section 3.2.2. The same is
not true of dictionaries, whose values frequently display significant
heterogeneity in CherryPy, as seen in this call into CherryPy’s API
from a client program:

1 cherrypy.config.update({
2 ’tools.encode.on’: True,
3 ’tools.encode.encoding’: ’utf-8’,
4 ’tools.staticdir.root’: os.path.abspath(os.path.

dirname(__file__)),
5 })

This dictionary, which contains only strings as keys but both strings
and booleans as values, is representative of many similar config-
uration dictionaries used in CherryPy and other Python libraries.
Reticulated can represent such heterogeneous types — this dic-
tionary could be given the type Dict(Str, Dyn). This example
could be given a more precise type if we introduced sum types into
the Reticulated type system.

eval and other villains Finally there are cases where fundamen-
tally untypable code is used, such as the eval function. The effect
of eval and its close relative exec is, of course, unpredictable at
compile time. In some cases, eval is used in rather astonishing
fashions reminiscent of those described by Richards et al. [23]:

1 def dm (listoflists,criterion):
2 function = ’filter(lambda x: ’+criterion+’,

listoflists)’
3 lines = eval(function)
4 return lines

This pstat.py function is evidently written for the use of novice
programmers who do not understand how to use lambdas but who
still wish to use higher order functions. Examples like this, and
other bizarre operations such as mutation of the active stack can
throw a wrench in Reticulated’s type system.

Miscellaneous In addition to these sources of dynamism, values
can also be forced to be typed Dyn due to more mundane limita-
tions of the Reticulated type system. Functions with variable arity
and those that take arbitrary keyword arguments have their input
annotations ignored and their parameter type set to Arb; designing
a type specification for functions that captures all of such behav-
ior is an engineering challenge and is important for practical use of
Reticulated. Reticulated also does not yet typecheck metaclasses or
function decorators; values that use them are simply typed Dyn.

3.2.7 Efficiency
None of our approaches make any attempt to speed up typed code.
The mechanisms that they use to perform runtime checks slow it
down, and we cannot prevent Python from performing its stan-
dard runtime checks even when the type system has proven them
unnecessary. As a result, Reticulated programs perform far worse
than their unchecked Python implementations — the slowSHA test
suite, for example, has on the order of a 10x slowdown under tran-
sient compared to normal Python. We have not expended much ef-
fort in optimizing Reticulated’s performance, so we are very con-
fident this could be much improved, but never beyond baseline
Python. However, we can compare them to each other meaning-
fully. The test suite included with the statistics library took 2.7 sec-
onds to run under the guarded semantics and 5.5 under monotonic,
but only 1.6 with transient. The slowSHA library test suite took
10.4 seconds with guarded and 13.6 with monotonic, but only 5.1
with transient. These figures are from an 8-core Intel i7 at 2.8 GHz,

and they exclude time spent in the typechecker and cast inserter.
Due to issues with object identity, CherryPy was unable to run with-
out error at all when using the guarded semantics, as we discuss in
Section 3.2.5, so we do not have a timing figure that program.

This result indicates that the simple, local checks made by
the transient semantics are, taken together, more efficient than the
proxy system used by guarded and (for functions only) monotonic,
and that the special getters and setters used by monotonic are
expensive, even if they do not cause casts to occur. This may
simply be because these features rely on Python’s slow reflection
and introspection features, as we discuss in Section 4; in any case,
this enhances the advantages of the transient design.

4. Implementation
Reticulated is implemented as a source-to-source translator, and
thus the dynamic semantics for our typed Python dialects are them-
selves Python programs. In this section, we discuss the implemen-
tation of the cast operations for each of our designs.

4.1 Guarded
The proxies of the guarded system are implemented as instances of
a Proxy class which is defined at the cast site where the proxy is in-
stalled. We override the getattribute property of the Proxy
class, which controls attribute access on Python objects, to instead
retrieve attributes from the casted value and then cast them. We
similarly override setattr and delattr , which control at-
tribute update and deletion respectively. This is sufficient for most
proxy use cases. However, classes themselves can be casted, and
therefore must be proxied in the guarded system. Moreover, when
a class’ constructor is called via a proxy, the result should be an
object value that obeys the types of its class, and which therefore
itself needs to be a proxy — even though there was no “original,”
unproxied object in the first place.

Python is a rich enough language to allow us to accomplish this.
In Python, classes are themselves instances of metaclasses, and so
a class proxy is a class which is an instance of a Proxy metaclass.
When an object is constructed from a class proxy, the following
code is executed:

1 underlying = object.__new__(cls)
2 proxy = retic_make_proxy(underlying, src.instance(),

trg.instance())
3 proxy.__init__()

In this code, cls is the underlying class being proxied. The call
to object. new creates an “empty” instance of the underlying
class, without the class’s initialization method being invoked. Then
an object proxy is installed on this empty instance; the source and
target types of the cast that this proxy implements are the types of
instances of the class proxy’s source and target types. Finally, the
initialization method is invoked on the object proxy.

Another source of complexity in this system comes from the
eval function. In Python, eval is dynamically scoped; if a string
being evaled contains a variable, eval will look for it in the scope
of its caller. This poses a problem when eval is coerced to a static
type and is wrapped by a function proxy, because then eval only
has access to the variables in the proxy’s scope, not the variables in
the proxy’s caller’s scope. To handle this edge case, proxies check
at their call site if the function they are proxying is the eval function.
If it is, the proxy retrieves its caller’s local variables using stack
introspection, and run eval in that context.

Another challenge comes from the fact that some values in
Python are not Python code. In the CPython implementation (the
only major Python implementation to support Python 3 at the time
of writing, and therefore our main target), many core features are
implemented in C, not self-hosted by Python itself. However, C



1 def retic_cast(val, src, trg, msg):
2 return retic_check(val, trg, msg)
3 def retic_check(val, trg, msg)
4 assert has_type(val, trg, msg)
5 return val

Figure 8. Casts and checks in the transient system.

code does not respect the indirection that our proxies use, and
so when it tries to access members from the proxy, it might find
nothing. We developed a partial solution for this by removing
proxies before values are passed into C whenever possible. The C
code is then free to modify the value without respecting the cast’s
type guarantees, but if a read occurs later, the reinstalled proxy will
detect any incorrectly-typed values and report an error.

4.2 Transient
While the guarded semantics is challenging to implement in
Python, the implementation of the transient semantics is very
straightforward. Figure 8 shows the essence of the transient run-
time system; the actual implementation is a bit more complicated
in order provide more informative cast errors than simple assertion
failures, and to perform the specialized object casts described in
Section 3.2.3. The has type function, used by transient’s imple-
mentation, is shown in Figure 5. The guarded and monotonic ap-
proaches depend on the reflection capabilities of the host language.
The transient design, on the other hand, is almost embarrassingly
simple, and depends on only the ability to check Python types at
runtime and check the existence of object fields; it could likely be
ported to nearly any language that supports these operations.

4.3 Monotonic
Our implementation of the monotonic semantics uses techniques
similar to those used by the guarded design, in that it modifies
the getattribute and setattr methods of objects. In
this case, however, we overwrite these methods on the class of the
casted object itself, not a proxy. We also install specialized getters
and setters for when the result of the read is statically known to be
of a precise static type, and for when it needs to be upcast to some
specific imprecise type. For example, an access of the form o.x

will be rewritten by the cast inserter to o.__staticgetattr__(’x’

) if the type of o provides x with a fully-static type. This is a call to
the original getter for o, which performs no casts or checks. On the
other hand, if o.x instead has a fully or partially dynamic type T,
the typechecker will rewrite it as o.__getattr_attype__(’x’, T),
which reads the field and then casts the result to T.

Monotonic is not totally free from guarded-style proxies. Al-
though this approach does not use object proxies, it does use prox-
ies to implement function casts. We did not encounter any issues in
our case studies that we traced to monotonic function proxies.

4.4 Discussion
When retrofitting gradual typing to an existing language, our con-
cerns are somewhat different than they might be if gradual typing
was integral to the design of the underlying language. Type safety,
for example, is not of the same paramount importance, because
Python is already safe — an error in the guarded cast implemen-
tation may cause unexpected behavior, but it will not lead to a seg-
mentation fault any more than it would have if the program was
run without types. On the other hand, by developing our system in
this manner we cannot constrain the behavior of Python programs
except through our casts. We cannot simply outlaw behavior that
poses a challenge to our system when that behavior occurs in un-
typed code, even if it interacts with typed portions of a program.

We previously spent time implementing gradual typing directly
in the Jython implementation of Python. We were able to achieve
some success in increasing efficiency of typed programs by compil-
ing them into typed Java bytecode. However, the amount of effort it
took to make significant modifications to the system made it diffi-
cult to use as a platform for prototyping different designs for casts.
By taking the source-to-source translation approach with Reticu-
lated, we are able to rapidly prototype cast semantics by simply
writing modules that define cast and (optionally) check functions,
and we are able to use Python’s rich reflection and introspection
libraries rather than needing to write lower-level code to achieve
the same goals. Reticulated does not depend on the details of any
particular implementation of Python, and when alternative Python
implementations like PyPy and Jython support Python 3, we expect
that little modification of Reticulated will be necessary to support
them. In the meantime, we are backporting Reticulated to Python
2.7, which is supported by several alternative implementations.

5. Related Work
Much work has gone into integrating static and dynamic typing in
the same system. Early work on the subject includes the dynamic
of Abadi et al. [2] and the quasi-static typing of Thatte [31], as well
as Strongtalk [7]. Cecil [8] and the Bigloo variant of Scheme [24]
allow optional type annotations, but do not encode runtime checks
between static and dynamic code. Gray et al. [13] extended Java
with contracts to allow interoperability with Scheme.

Siek and Taha [26] introduced the gradual typing approach to
melding static and dynamic type systems. Other work has extended
gradual typing to support many different language features (such
as that of Herman et al. [15], Siek and Taha [27], Wolff et al. [36],
Takikawa et al. [30]). Other research has adapted the notion of
blame tracking from the work on contracts by Findler and Felleisen
[11] (Siek and Wadler [28] and Wadler and Findler [35]). Rastogi
et al. [21] develop an approach for inferring the types of locals
variables, parameters, and return types.

Industrial language designers have taken gradual typing to heart,
with several languages, including C# [5], TypeScript, Dart [12], and
Hack [10] offering support for gradual typing or similar features.
Work on adding gradual typing to existing languages has also
appeared within the academic space, such as the work of Tobin-
Hochstadt and Felleisen [33], Allende et al. [4] and Ren et al. [22].
Bloom et al. [6] developed the Thorn language, which supports the
like types of Wrigstad et al. [37], enabling the mixing of static and
dynamic code without loss of compiler optimization.

Politz et al. [20] formalized the semantics of Python by devel-
oping a core calculus for the language and a “desugarer” which
converts Python programs to the calculus. Lerner et al. [18] devel-
oped TeJaS, a framework for retrofitting static type systems onto
JavaScript to experiment with static semantics design choices. The
authors use it to develop a type system similar to that of TypeScript.

Cutsem and Miller [9] discussed some of the challenges in de-
signing proxies that correctly emulate the target object’s behavior,
including the need to preserve identity checks.

6. Conclusions
In this paper we presented Reticulated Python, a lightweight frame-
work for designing and experimenting with gradually typed dialects
of Python. With this system we develop two designs for runtime
casts. The guarded system implements the design of Siek and Taha
[27], while the novel transient cast semantics does not require prox-
ies but instead uses additional use-site checking to preserve static
type guarantees, and the monotonic approach causes object values
to become monotonically more precise such that they are more or
equally statically typed than all references to them.



We evaluated these systems by adapting several third party
Python programs to use them. By annotating and running these pro-
grams using Reticulated, we determined that, while our type system
is mostly sufficient, much more Python code would be able to be
typed statically were we to include generics in our type system. We
also discovered that with the right design choices, including sup-
porting static types for literals and using local, dataflow-based type
inference, we were able to cause significant portions of programs to
be entirely statically typed, and therefore suitable for compiler op-
timization. We made several alterations to our type system based on
how it interacted with existing Python patterns, such as modifying
casts that check the existence of object members to be catchable by
source-program try/except blocks. We also encountered other situ-
ations where we had to modify the original program to interact well
with our type system, including by replacing object and type iden-
tity checks with other operations and preventing lists from varying
between different element types. We discovered several potential
bugs in our target programs by running them with Reticulated and
we found that the proxies used by the guarded system cause serious
problems because they do not preserve object identity.
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