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ABSTRACT 
In this paper we present the Generic Graph Component Library 
(GGCL), a generic programming framework for graph data struc- 
tures and graph algorithms. Following the theme of the Standard 
Template Library (STL), the graph algorithms in GGCL do not 
depend on the particular data structures upon which they operate, 
meaning a single algorithm can operate on arbitrary concrete repre- 
sentations of graphs. To attain this type of flexibility for graph data 
structures, which are more complicated than the containers in STL, 
we introduce several concepts to form the generic interface between 
the algorithms and the data structures, namely, Vertex, Edge, Vis- 
itor, and Decorator. We describe the principal abstractions com- 
prising the GGCL, the algorithms and data structures that it pro- 
vides, and provide examples that demonstrate the use of GGCL to 
implement some common graph algorithms. Performance results 
are presented which demonstrate that the use of novel lightweight 
implementation techniques and static polymorphism in GGCL re- 
sults in code which is significantly more efficient than similar li- 
braries written using the object-oriented paradigm. 

1 INTRODUCTION 
The graph abstraction is widely used to model a large variety of 
structures and relationships in computer science. Graph algorithms 
are extremely important in such diverse application areas as design 
automation, transportation, optimization, and databases. Conse- 
quently, the implementation of graph algorithms is an important 
enterprise that can be greatly facilitated by the availability of high- 
quality software for realizing graph algorithms. (By “high-quality” 
in this case we take to mean, such attributes as functionality, relia- 
bility, usability, efficiency, maintainability, and portability [ 151.) 

There are several existing general purpose graph libraries, such as 
LEDA [ 141, the Graph Template Library (GTL) [5], Combinator- 
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ica [2 11, and Stanford GraphBase [ 111. Sources such as Netlib [l] 
and [22] represent repositories of graph algorithms. These libraries 
and repositories represent a significant amount of potentially re- 
usable algorithms and data structures. However, none of these li- 
braries faithfully follows the generic programming paradigm [3] 
(also see Section 1.1) and are therefore far more rigid (and much 
less reusable) than necessary. 

These libraries are inflexible in several respects. First, the user is re- 
stricted to the graph data structures provided by the library. Second, 
the graph algorithms often do not provide explicit mechanisms for 
extension, making it difficult or impossible for users to customize 
vanilla algorithms to meet their needs. Finally, the manner in which 
these libraries associate graph properties (such as color or weight) 
with a graph data structure is often inflexible and hard coded into 
the algorithms or data structures. Ultimately, these (and other) li- 
braries are fundamentally limited in terms of their flexibility by 
their design and implementation. 

1.1 Generic Programming 

Recently, generic programming [3] has emerged as a powerful new 
paradigm for library development. The tindarnental principle of 
generic programming is to separate algorithms from the concrete 
data structures on which they operate based on the underlying ab- 
stract problem domain concepts, allowing the algorithms and data 
structures to freely interoperate. That is, in a generic library, al- 
gorithms do not manipulate concrete data structures directly, but 
instead operate on abstract interfaces defined for entire equivalence 
classes of data structures. A single generic algorithm can thus be 
applied to any particular data structure that conforms to the require- 
ments of its equivalence class. In the celebrated Standard Template 
Library (STL) [12], the data structures are containers such as vec- 
tors and linked lists. Iterators form the abstract interface between 
algorithms and containers. Each STL algorithm is written in terms 
of the iterator interface and as a result each algorithm can operate 
with any of the STL containers. In addition, many of the STL al- 
gorithms are parameterized not only on the type of iterator used 
for traversal, but on the type of operation that is applied during the 
traversal. For example, the transform ( ) algorithm has a param- 
eter for a Unaryoperator function object (functor). Likewise, 
some of the STL containers are parameterized with function ob- 
jects, such as the Compare template parameter for the s td: : map 
and std: :set classes. 
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Concepts The GGCL library is developed using terminology sim- 
ilar to that of the SGI STL [3]. In the parlance of the SGI STL, 
the set of requirements on a template parameter for a generic algo- 
rithm or data structure is called a concept. (Generic programming is 
sometimes referred to as “programming with concepts.“) Types that 
fulfill the requirements of a concept are said to model that concept. 
For example, pointer types such as int * model (or, are models of) 
the concept RandomAccessJterator as defined by the STL. The 
class types s td : : vector<Tz and std: : list<Tr are models 
of the Container concept. Concepts can extend other concepts, 
which is referred to as refinement. We use a bold sans serif font 
for all concept identifiers. 

For example, one version of the STL accumulate ( ) algorithm 
is prototyped as follows: 

template <class InputIterator, class T> 
T accumulate(InputIterator first, 

InputIterator last, T init); 

For proper operation of accumulate ( ) , we require that the type 
of the arguments first and last be models of the concept In- 
putlterator. We note that the C++ language does not provide sup- 
port for concept checking. That is, although we give the tem- 
plate parameter to accumulate ( ) the name of Inputlterator,the 
name is merely a placeholder. The C++ language does not enforce 
that the arguments passed to accumulate ( ) actually be a model 
of Inputlterator. Naturally, if the arguments do not model (or re- 
fine) Inputlterator, it is likely that an error will occur when compil- 
ing that particular instantiation of accumulate ( ) , but that is not 
the same (semantically) as identifying that the instantiation itself is 
in error. 

1.2 A Generic Graph Library 
The domain of graphs and graph algorithms is a natural one for 
the application of generic programming. There are many kinds of 
graph representations, such as adjacency matrix, adjacency list, and 
dynamic pointer-based graphs and there also numerous graph algo- 
rithms. In a generic graph library, we should be able to write each 
algorithm only once and use it with any graph data structure. 

In addition, the algorithms should be flexible, so that algorithmpat- 
terns such as Depth First Search (DFS) can be reused. For example, 
one may want to use DFS to traverse a graph and calculate whether 
vertices are reachable. In another situation, DFS could be used to 
record the order of vertices. In yet another situation, one may want 
to use DFS to calculate reachability and the order of vertices. These 
requirements are similar to those of most general purpose libraries, 
which would perhaps suggest that the generic programming style 
of the STL might be directly applicable to the creation of a graph 
library. 

However, there are important (and fundamental) differences be- 
tween the types of algorithms and data structures in STL and the 
types of algorithms and data structures in a generic graph library. 
In particular, there are numerous ways in which edge and vertex 
properties (such as color and weight) are implemented and asso- 
ciated with vertices and edges. One way is to store properties in 
an array indexed by vertex ID. Another method, suitable for graphs 
with explicit storage for each vertex, is to store the properties inside 

the vertex data structure. Rather than imposing one approach over 
another, a generic graph library should provide an generic means 
for accessing the properties of a vertex or edge, regardless of the 
manner in which the properties are stored. 

To accommodate the unique properties of graphs and graph algo- 
rithms, we introduce several concepts upon which the interface be- 
tween graphs and graph algorithms will be built: Vertex, Edge, 
Visitor, and Decorator. The latter two concepts are similar in spirit 
to the “Gang of Four” [6] patterns Visitor and Decorator but are 
quite different in terms of implementation techniques. 

In the following sections we describe the design and implemen- 
tation of the Generic Graph Component Library (GGCL). This li- 
brary was designed and implemented from the ground up with gen- 
eric programming as its fundamental paradigm. In the next sec- 
tion, we define the abstract graph interface and concepts used by 
GGCL in more detail. The generic graph algorithms in GGCL are 
described in Section 3, and Section 4 discusses the main implemen- 
tation issues, Experimental results demonstrating the performance 
of GGCL (and comparing the performance to several other graph 
libraries) are given in Section 5. Finally, our conclusions are pro- 
vided in Section 6. 

2 ABSTRACT GRAPH INTERFACE 
The domain of graph data structures and algorithms is in some re- 
spects more complicated than that of containers. The abstract it- 
erator interface used by STL is not sufficiently rich to encompass 
the numerous ways that graph algorithms may traverse a graph. In- 
stead, we formulate an abstract interface that serves the same pur- 
pose for graphs that iterators do for basic containers (though iter- 
atom still play a large role). Figure 1 depicis the analogy between 
the STL and the GGCL. 

1 A 

Iterator : Vertex, Edge, 
Functor Visitor, Decorator 

(a) 6) . 

Figure 1: The analogy between the STL and the GGCL. 

2.1 Formal Graph Definition 
The appropriate abstract graph interface can be derived directly 
from the formal definition of a graph [4]. A graph G is a pair (KE), 
where V is a finite set and E is a binary relation on V. V is called 
a vertex set whose elements are called vertices. E is called an edge 
set whose elements are called edges. An edge is an ordered or un- 
ordered pair (u.v) where u,v E V. If (u,v) is and edge in graph G, 
then vertex v is adjacent to vertex u. Edge (u.v) is an our-edge of 
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Expression Return Type Description 
X::vertex-type A modelof Vertex 
e.source() vertex-type Thesourcevertex ofedge e 
e.target() vertex-type Thetargetvertex ofedge e 

Table 3: The specification of the Edge concept. 

vertex u and an in-edge of vertex v. In a directed graph edges are or- 
dered pairs while in a undirected graph edges are unordered pairs. 
In a directed graph an edge (u,v) leaves from the source vertex u to 
the target vertex v. 

2.2 Graph Concepts 
The three main concepts necessary to define our graph interface are 
Graph, Vertex, and Edge. Each of our concept definitions derives 
directly from the formal graph definition. By design we have tried 
to keep the interface close to that of existing graph libraries and to 
the common graph algorithm notations. 

Graph The Graph concept merely contains a set of vertices and 
a set of edges and a tag to specify whether it is a directed graph or an 
undirected graph. Table 1 lists the Graph requirements, including 
its associated types. Note that the specific types of the sets are 
not specified. The only requirement is that vertex set be a model 
of ContainerRef and its value-type a model of Vertex. The 
edge set must be a model of ContainerRef and its value-type 
a model of Edge. ’ 

Vertex The Vertex concept provides access to the adjacent ver- 
tices, the out-edges of the vertex and optionally the in-edges. Ta- 
ble 2 lists the Vertex requirements, including its associated types. 

Edge An Edge is an ordered or unordered pair of vertices. The 
elements comprising the Edge are the source vertex and thk target 
vertex. In the unordered case it is just assumed that the position 
of the source and target vertices are interchangeable (and, corresp- 
dondingly, that the Graph is undirected). Table 3 lists the Edge 
requirements. 

Decorator As mentioned in the introduction, we would like to 
have a generic mechanism for accessing vertex and edge properties 
of a graph (e.g., color or weight) from within an algorithm. The 
generic access method is necessary to support the numerous ways 
in which the properties can be stored as well as the numerous ways 
in which access to that storage can be implemented. We give the 
name Decorator to this concept since it is similar to the intent of 
the “Gang of Four” Decorator pattern [6], (which dynamically add 
properties to an object). 

‘The ContainerRef concept is very similar to the Container con- 
cept of the STL, except that the ContainerFIef concept lacks the 
notion of “ownership”, so making a copy of a ContainerRef ob- 
ject merely creates an alias to the same underlying container. Ob- 
viously, a reference to a Container object satisfies this require- 
ments. 

Table 4 gives the definition of the Decorator concept. A Deco- 
rator is very similar to a functor, or function object. We use the 
method of operator [I instead of operator() since it is a 
better match for the commonly used graph algorithm notations. 

Visitor In the same way that function objects or fnnctors are 
used to make STL algorithms more flexible, we can use functor- 
like objects to make the graph algorithms more flexible. We use 
the name Visitor for this concept because the intent is similar to 
the well known visitor pattern [6]. We wish to add operations to be 
performed on the graph without changing the source code for the 
graphs or for the generic algorithms. 

Table 5 shows the definition ofthe Visitor concept. In the table, v is 
a visitor object, u and s are vertices, and e is an edge. Our Visitor 
is somewhat more complex than a function object, since there are 
several well defined entry points at which the user may want to in- 
troduce a call-back. For example, discover ( ) is invoked when 
an undiscovered vertex is encountered within the algorithm. The 
process ( ) method is invoked when an edge is encountered. The 
Visitor concept plays an important role in the GGCL algorithms. 

The Decorator and Visitor concepts are used in the GGCL graph 
algorithm interfaces to allow for maximum flexibility. Below is 
the prototype for the GGCL depth first search algorithm, which in- 
cludes parameters for both a Decorator and a Visitor object. There 
are two overloaded versions of the interface, the first one in which 
there is a default ColorDecorator. The default decorator accesses 
the color property directly from the graph vertices. This is anal- 
ogous to the STL algorithms. For example, there are two over- 
loaded versions of the lowerbound ( ) algorithm. The default 
uses whatever less-than operator is defined for the element type, 
while the other version takes an explicit BinaryOperator functor 
argument. 

template <class Graph, class Visitor> 
void dfs(Graph& G, Visitor visit); 

t-late <class Graph, class Visitor, class ColorD> 
void dfs(Graph& G, Visitor visit, ColorD color); 

3 GENERIC GRAPH ALGORITHMS 
The generic graph algorithms are written solely in terms of the ab- 
stract graph interface defined in the previous section. They do not 
make assumptions about the actual graph type or the underlying 
data structure. This enables a high degree of r&se for the algo- 
rithms. 

Breadth First Search Our first example is the classic Breadth 
First Search (BFS) algorithm. As a starting point, we will look at 
an adaptation of the textbook [4] algorithm, written in terms of the 
GGCL interface (Figure 2). This algorithm calculates the distance 
from a source vertex to all other reachable vertices in the graph. It 
also records the predecessor, or parent, of each vertex. The color 
decorator is used by the algorithm to keep track of which vertices 
have been visited (in case there are cycles). This algorithm is pro- 
vided as a straw man - it is not the BFS that is actually provided 
by GGCL. 
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Table 1: The specification of the Graph concept. 

vertexlist-type The adjacent vertices ofvertex u 

The in edges of vertex u (optional) 

Table 2: The specification of the Vertex concept. 

Expression Return Type Description 
return-type A type of object accessed by the decorator 
d[ul return-type The decorating properly d of Vertex u 

Table 4: The specification of the Decorator concept. 

Expression Return ‘Qpe Description 
v.initialize(u) void Invoked during initialization. 
v.start (s) void Invoked at the beginning of algorithms. 
v.discover(u) void Invoked when an undiscovered vertex is encountered. 
v.finish(u) void Invoked when algorithms finish visiting a vertex. 
v.process (e) boo1 Invoked when an edge is traversed. 

Table 5: The specification of the Visitor concept. 
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template <class Graph, class Color, class Distance, class Predecessor> 
void textbook-BFS(Graph& G, typemama Graph::vertex-type s, 

Color color, Distance d, Predecessor p) 
1 

type&f typename Graph::vertex-type Vertex; 
typenama Graph::vertices-type::iterator ui; 
typename Vertex::edgelist-type::iterator ei; 

//initialization 
for (ui = G.vertices().begin(); ui != G.vertices().end(); ++ui) { 

color[*uil = WHITE; 
d[*ui] = INF; 

1 

//starting from vertex s 
color[sl = GRAY: 
dtsl = 0; 
std::queue<Vertex> Q: 
Q.push(s); 

//main algorithm 
while (! Q.empty()) { 

Vertex u = Q.frontO; 
for (ei = u.out-edges().begin(); ei ! 

Vertex v = (*ei).target(); 
if (color[vl == WHITE) { 

color[vl = GRAY: 
d[vl = d[uJ + 1; 
p[vl = u; 

= u.out-edgesO.endO ++ei) { 

Q.poP(); 
color[ul = BLACK; 

J 

Figure 2: The textbook Breadth First Search algorithm. 
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AS it stands, this algorithm is quite useful, but in many ways it is 
not sufficiently general. In GGCL we capture the essence of the 
Breadth First Search pattern in a generic generalized BFS algo- 
rithm, as shown in Figure 3. The visitor parameter provides 
flexibility in the kinds of actions performed during the BFS. There 
are several call-back points associated with the visitor, including 
starto, discover(), processo, and finisho. The 
Q parameter allows for different kinds of queues to be used. The 
visited fun&or was added for algorithms that would like to per- 
form an action on subsequent encounters with a vertex after it is 
discovered. ‘The initialization steps were moved to a separate func- 
tion to accomodate the need for certain type-specific initializations 
(e.g., a graph consisting only of edge lists without explicit vertex 
storage). 

In the generalizedEFT ( ) algorithm we use the expression 
u . out-edges ( ) to access the list of edges leaving vertex u. Iter- 
ators of this list are used to access each of the edges. The Visitor is 
used to parameterize the operations performed on each edge as it is 
discovered. The algorithm also inserts each discovered vertex onto 
Q or, if the vertex has already been visited, invokes the visited 
fun&or. Target vertices are accessed through e . target ( ) . 

The generalizedBFS ( ) algorithm is ideal for reuse in other 
algorithms. Figure 4 gives an overview of the algorithms we have 
constructed so far using the generalizedBFS. A variation on 
the UML [ 10, 161 notation is used to represent the algorithms, vis- 
itor classes, and concepts. A solid box stands for an algorithm or 
a class. Dotted boxes are template arguments or concepts. The 
classes within a concept box are models of the concept. The nota- 
tion <<bind>> indicates the binding of formal template argu- 
ments to concrete types. Unbound template arguments are marked 
with underscores, giving a notation for partial specialization. 

In Figure 4 we can see how particular parameters are chosen in 
the creation the different algorithms. First, with regards to the 
queue type, the BFS algorithm in Figure 5 is constructed by using 
the STL queue, while Dijkstra’s single-source shortest path and 
Prim’s minimum spanning tree algorithms are constructed with a 
mutable priority queue (a priority queue with a decrease-key op- 
eration [4]). Implementation of the textbook BFS algorithm using 
generalizedBFS ( ) is shown in Section 4.3. A customized 
queue is used with BFS in the Reverse Cuthill McKee sparse ma- 
trix ordering algorithm [ 8, 171. 

Looking at the Visitor parameter, we see that the normal BFS 
algorithm uses the bf s-vi s i t or which keeps track of the vertex 
colors. Dijkstra’s and Prim’s algorithms both use the weighted- 
-edge-visitor, the only difference between them being the op- 
erator that is bound to BinaryOp parameter. Dijkstra’s algorithm is 
implemented using a plus f&&or, and Prim’s is implemented us- 
ing the pro j ec t2nd fLnctor, which is just a binary operator that 
returns the 2nd argument. Figure 6 shows the GGCL implemen- 
tation of Prim’s minimum spanning tree algorithm while Figure 7 
shows the GGCL implementation of Dijkstra’s single source short- 
est path algorithm. The algorithms consist simply of some setup 
declarations, initialization and a call to generalizedl3FS. The 
only difference between the two algorithms is the fhnction object 
used inside weighted-edge-visitor. 

The Visited parameter is simply a null operation for the nor- 
mal BFS algorithm, while in the Dijkstra’s and Prim’s algorithms 

it provides queue update by invoking the mutable priority queue’ 
decrease-key operation. 

Depth First Search The Depth First Search is another fimdamen- 
tal traversal pattern in graph algorithms, and is a second source 
for reuse. Figure 8 depicts some algorithms that can be either di- 
rectly derived from DFS, or that make use of it. The code example 
in Figure 9 gives the implementation of the topological sort algo- 
rithm, a classic example DFS algorithm reuse. The topo-sort- 
-visitor merely outputs the vertex to the Outputlterator inside 
the finish(u) callback. 

The concise implementation of algorithms such as Prim’s Mini- 
mum Spanning Tree and Topological Sort is enabled by the gener- 
icity of the GGCL algorithms, allowing us to exploit the reuse that 
is inherent in these graph algorithms in a concrete fashion. 

Currently, the GGCL includes a basic set of algorithms: DFS, BFS, 
Dijksta’s algorithm for the Shortest Path problem, Prim and Kruskal 
algorithms for Minimum Spanning Tree, topological sort, and con- 
nected components. In addition we have implemented several graph 
algorithms for sparse matrix ordering, including the Reverse Cuthill 
McKee and the Minimum Degree algorithms. GGCL is an ongoing 
project and a number of generic graph algorithms are in the process 
of being implemented. 

4 GGCL IMPLEMENTATION 

4.1 Graph Data Structure Implementation 
The GGCL graph data structures are constructed in a layered man- 
ner to provide maximum flexibility and reuse. The layered archi- 
tecture also provides several different points of customizability. At 
one end of the spectrum one can use the graphs provided by GGCL 
and make small modification with little effort. In the middle of the 
spectrum are graph types that can be pieced together from standard 
components such as lists and vectors. At the far end of the spec- 
trum the user may already have their own data structure, and they 
just need to create a GGCL Graph compliant interface to his or her 
data structure. 

Interfacing with external graph types To test the difficulty of 
creating a GGCL interface for non-GGCL graph types, we con- 
structed a Graph interface for LEDA graphs. The interface code is 
1 l/2 pages and took approximately 1 man-hour to develop. 

Composing Graphs from standard containers The GGCL pro- 
vides a framework for composing graphs out of standard containers 
suchasSTLstd: :vector,std: :list,andmatricesfiomthe 
Matrix Template Library (MTL) [ 193, another generic component 
library we have developed. Of course, the composition mechanism 
will work for any STL Container compliant components, so this 
provides another avenue for extensibility by the user. 

The set of graph configurations currently provided by GGCL are 
listed in Figure 10. 

Below is an example of defining an adjacency-list graph type whose 
vertices have an associated color and whose edges have an associ- 
ated weight. 
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tamglare <class Vertex, class QType, class Visitor, class Visited> 
void generalized-BFS(Vertex s, QType& Q, Visitor visitor, Visited visited) 
{ 

typedef typename Vertex: :edgelist-type::value-type Edge: 
typename Vertex::edgelist-type::iterator ei; 
visitor.start(s); 
Q-push(s); 
while (! Q.empty()) { 

Vertex u = Q.front(); 
Q.PoP(); 
visitor.discover(u): 
for (ei = u.out-edges().begin(); ei != u.out-edges().end(); ++ei) { 

Edge e = *ei; 
if (visitor.process(e)) 

Q.push(e.target()); 
else 

visited(visitor, Q, ei); 
1 
visitor.finish(u); 

Figure 3: The generalized Breadth First Search algorithm. 

Weight : Distance ! . . ..I............<............... 

I 

; <<binc¶>>(-, mutable-queue. 
I prim-visitor) i ~_,..,...._~.__,_......"...........~............. 
1 6 Graph ! Visitor i Weight ; Distance i . . . . . . . . ..)......................... I.. : 

!---- MSTsrim 

i <<bind>>(-, queue, 
I 
i bfs visitor) . . . . . . . . . . . . . . . . . ..~.............. 

j Graph I Visitor: Color j ;-.-.i~~s i i 

6 
j c<bind>>(-, rem-uueue. -1 

,.-.-.-.-.-.-.i <(use8>> 
I 

’ VisitorPlugin I .““.‘..““‘.‘...................“’, 

Visitor L---------------I 

rizzzq : 
timestamp-visitor 

topo-sort-visitor 

components-visitor 

disjoint-set-visitor 

predecessor-visitor 

r----- --------1 
1 Weight ’ BinaryOp 1 I__~~~-‘--------~ i 

weighted-edgepisito 
Q 

~_.__.______._____._.__.__.__._.___, 
: QType 

;--&&q j 

: priority-queue ; 

: mutable-queue j 

I 

;<<bind>>(-, project2nd) i 
I 
L.-.-.-. prim-visitor 

Figure 4: The BFS family of algorithms and the predefined set of visitors provided in GGCL. 
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tamplate <class Gsaph, class Visitor, class ColorDecorator> 
void bfs(Graph& G, Graph::vertex-type s, Visitor visit, ColorDecorator color) 
{ 

typedef type-e Graph::vertex-type Vertex; 
std::queue<Vertex> Q: 

bfs-visitor<ColorDecorator, Visitor> visitor(color, visit); 

generalized-init(G, visitor); 
generalized-BFS(s, Q, visitor, null-operation()); 

> 

Figure 5: The BFS algorithm in GGCL. 

template <class Graph, class Visitor, class Distance, class Weight, class ID> 
void prim(Graph& G, Graph::vertex-type s, Visitor visit, Distance d, Weight w, ID id ) 
{ 

typedef typename Graph::vertex-type Vertex; 
typedef typename Distance::return-type D; 
typedef functor-less<Distance> Compare; 

Compare c(d); 
mutable-queue<Vertex, std::vector<Vertex>, Compare, ID > Q(G.num-verticeso, c, id); 

weighted-edge-visitor<Weight, Distance, Visitor, -project2nd<D,D> > visitor(w, d, visit); 

generalized-init(G, visitor); 
generalized-BFS(s, Q, visitor, queue-update0 ); 

1 

I -I 

Figure 6: The GGCL implementation of the Prim Minimum Spanning Tree algorithm as a call to generalizedBFS ( ) . The Di- 
jkstra’s Single-Source Shortest Path algorithm can be realized in the same way simply by using a different function object in place of 
project2nd<D,D>. 

template <class Graph, class Visitor, class Distance, class Weight, class ID> 
void dijkstra(Graph& G, Graph::vertex-type s, Visitor visit, Distance d. Weight w, ID id 1 
{ 

typedef type-e Graph::vertex-type Vertex: 
typedef typenaum Distance::return-type D; 
typedef functor-less<Distance> Compare: 

Compare c(d); 
mutable-queue<Vertex, std::vector<Vertex>, Compare, ID > Q(G.num-verticeso, c, id); 

weighted-edge-visitor<Weight, Distance, Visitor, plus<D> > visitor(w, d, visit): 

generalized-init(G, visitor); 
generalized-BFS(s, Q, visitor, queue-update0 ); 

1 

Figure 7: The GGCL implementation of the Dijkstra’s Single-Source Shortest Path algorithm as a call to generali zed_BFS ( 1. 
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I 
I <bind>>(-, stack, dfs-visitor) 
8 ~_.____.____.__I__.._.....~.............-, 

connected-components 
1 
I 
, 
I 
: <<use>> I 
0 
I 
1 

1 <xbind>>(-, color, cycle-detect-visitor) 
I ;.........._...~.........;.............., 
I : Graph j Color i Visitor i _ - - - ._. . . a. . . __I_. 

i- 
. . .__’ 

cycle-detection I-' 

Figure 8: The family of DFS algorithms. 

t-late <class Graph, class OutputIterator, class Visitor, class Color> 
void topological-sort( Graph&G, OutputIterator result, Visitor visitor, Color color) { 

topo-sort-visitor<OutputIterator, Visitor> topo-visit(c, visitor); 
dfs(G, topo-visit, color); 

1 

tqlatr <class OutputIterator, class Super> 
struct topo-sort-visitor : public Super { 

//constructors . . . 

template <class Vertex> 
void finish(Vertex u) { 

*result = u; ++result; 
Super::finish(u): 

1 
OutputIterator result; 

1; 

Figure 9: The GGCL implementation of the topological sort algoritm using DFS. 
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__. ..................................................................................................................... 
: Graph ~...................I_....................~....................~ ................... : 

; . . . . . . . . . .._ . . .._ __, 
GraphRepresentation 

~.....__......_______..._( 

j AdjacencyList ! 

. . . . . . . . . . . . . . . . . . . . . ..__._ 

Adjacencyhfatrix i 

p----j 

1 ggcl_vecT ( 

. . . . . . . . . . . . . . .._........______. 

DynamicGraphRep i I 
: 

1 hash-nmpT 1 

typedef graph<adjacency-list<vecT>, undirected, 
colorglugino, Weight<int> > myGraph; 

Graph Representation The implementation framework centers 
around the main graph interface class and the GraphRepresen- 
tation concept. The graphinterface classconstructsthe tillgraph 
interface based on the minimized interface exported by the Graph- 
Representation concept. This allows full fledge GGCL Graphs 
to be constructed out of standard container components with very 
little work. 

The GraphRepresentation concept is basically a 2D Container 
(a Container of Containers) coupled with four helper functions: 

Iter2D get-target(Iter2D b, IterlD i); 
stored-edge& get-edge(IterlD i); 
boo1 add(EdgeList& elist, size-type vertex-num, 

const stored-edge& e); 
void remove(EdgeList& elist, size-type vertex-num); 

A 1D Container within a GraphRepresentation corresponds to 
the out-edge list for a particular vertex. In addition, there is a one- 
to-one correspondence between the 2D lterator and the vertices of 
the graph. 

The get-target ( ) helper function is necessitated because the 
GGCL graph must be able to derive the target vertex from an 
edge object, through the information provided by the GraphRep- 
resentation. The get-edge ( ) function provides a generic access 
method to the extra edge properties stored within an edge list, and 

: : 

: : 

: 

:.__............_...........__...: 
. 

Figure 10: The Graph Components Provided By GGCL. 

the add() and remove0 methods provide a generic interface 
for adding and removing edges from a vertex. 

The GraphRepresentation is further refined into three sub con- 
cepts, the AdjacencyList, AdjacencyMatrix, and DynamicGraph- 
Rep. 

The AdjacencyList concept corresponds to a “sparse” or “com- 
pressed” representation of a graph. As such, further requirements 
are added to the 2D Container of the GraphRepresentation. For 
a model of AdjacencyList the inner container must be a variable- 
sized Container whose value-type is the size-type for a 
vertex if the graph has no extra edge-associated data, or a s td : : - 
paircsize-type,stored-edge>wherethe stored-edge 
is the type of an object containing any extra edge-associated data 
such as weight. 

The AdjacencyMatrix concept corresponds to a ‘“dense” represen- 
tation of a graph, with boolean values for all vertex pairs, to mark 
them as connected or not. 

The DynamicGraphRep concept requires its models to have a 
head pointer and explicitly stored vertex objects. Through the stored 
vertex it is able to access adjacent vertices. 

Custom Graph Representations As an example of constructing 
customized models of GraphRepresentation, we show how one 
can build an AdjacencyList using s td: : vector and s td : : - 
list. The various parts of the GraphRepresentation are in- 
jected into the GGCL graph class by constructing a graph rep- 
resentation class. Figure 11 lists the implementation. One merely 
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has to compose a couple of container types and fill in a few short 
functions. The add ( ) and remove ( ) methods are not depicted, 
but they are each approximately 5 lines. 

4.2 Decorator Implementatidh 
In some situations the particular property of vertices or edges is 
strongly associated with the graph and exists for the lifetime of the 
graph. For instance, the distance property could fall into this cate- 
gory. In other situations the property is only needed for a particu- 
lar algorithm. Typically one would want to store a color property 
externally, since it may only be needed for a particular algorithm 
invocation. Thus there are two categories of decorators, interior 
decorators and exterior decorators. For exterior decorators, the 
decorating properties are stored outside of the graph object (they 
are passed directly to the GGCL algorithm) and the decorator will 
access the externally stored data indexed by the vertex or edge ID. 
On the other hand, if the decorating properties are stored inside 
of the graph object, the decorator consults the vertex or the edge 
objects to obtain the decorating property. Figure 12 shows the pre- 
defined models Decorator in GGCL. 

Internally Stored Properties: Vertex and Edge Plugins For in- 
ternal properties, the graph class provides optional parameterized 
storage plugins for both vertices and edges. This allows the user 
to plug in storage for an arbitrary set of decorating properties. For 
example, a graph with internally stored edge weights and color and 
distance properties for vertices could be defined as follow: 

typedef color+plugin<distanceglugino > VPlugins; 
typedef graph<adjacency-list-, undirected, 

VPlugins, Weightcintz > myGraph; 

The mixin technique [18] of templated inheritance is used to im- 
pIement the layering of vertex and edge plugins. Figure 12 shows 
the decorators that are provided in GGCL. We have also created 
a mechanism so that users can easily create new custom storage 
plugins for decorating properties with user-defined names. 

4.3 Visitor Implementation 
To implement a model of Visitor one defines a class conforming 
to the Visitor concept and fills in the call-back methods (disco- 
ver ( 1, process ( ) , etc.). Figure 13 shows the model of Visi- 
tor used to create the normal BFS algorithm from the genera- 
lized-~FS. This class is reponsible for keeping track of the ver- 
tex colors. 

As in the decorator plugins, the mixin technique [ 181 is used to 
make visitors more extensible. This is the reason for the Base tem- 
plate argument, which allows visitors to be layered through inher- 
itance, giving an arbitrary number of visitors a chance to perform 
actions during the algorithm (each call-back method must invoke 
in inherited call-back in addition to performing its own actions). If 
one wished to recreate the textbook BFS algorithm shown previ- 
ously, which calculates distances and predecessors, one would call 
bf s with a distance and predecessor visitor. The GGCL has helper 
functions defined for creating the standard visitors. 

bfs(G, s, visit-distanceld, visit-predecessor(p))); 

where G is a graph object, s the starting vertex, d an instance of 
distance decorator, and p an instance of predecessor decorator. 

color-decorator 

weight-decorator 

distance-decorator 

finishtime-decorator 

: predecessor-decorator 

j discovertime-decorator ( 

Figure 12: The predefined models of Decorator in GGCL. 

5 PERFORMANCE 
Efficiency is typically advertised as yet another advantage of gen- 
eric programming - and these claims are not simply hype. The 
efficiency that can be gained through the use of generic program- 
ming and high-level performance optimization techniques (which 
themselves can be expressed in a generic fashion) is astonishing. 
For example, the Matrix Template Library, a generic linear algebra 
library written completely in C++, is able to achieve performance 
as good as or better than vendor-tuned math libraries [ 191. 

For many of the efficient graph data structures in GGCL, vertex 
and edge objects that model the GGCL interface concepts are not 
explicitly stored. Rather, only partial information is stored. The 
GGCL interface layer constructs full vertex and edge objects on 
the fly from this information. These objects are extremely light- 
weight, and have been designed so that a modem C++ compiler 
will optimize the small objects away altogether. 2 

Additionally, the flexibility within the GGCL is derived exclusively 
from static polymorphism, not from dynamic polymorphism. AS 
a result, all dispatch decisions are made at compile time, allow- 
ing the compiler to inline every function in the GGCL graph in- 
terface. Hence the “abstraction penalty” of the GGCL interface 
is completely eliminated. The machine instructions produced by 
the compiler are equivalent to what would be produced from hand- 
coded graph algorithms in C or Fortran. 

5.1 Comparison to General Purpose Libraries 
Using a concise predefined implementation of adjacency list graph 
representation in GGCL following the concepts we described in 
Section 4, we compare the performance of bf s, df s, and di j k- 
stra algorithms with those in LEDA(version 3.8), a popular ob- 
ject-oriented graph library [ 141, and those in GTL [S]. We did not 

2 We call a light-weight object such as this a Mayfly because of its 
very short lifetime. We discuss the Mayfly as a design pattern for 
high performance computing in [20]. 
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//Define a tag for the custom graph representation. 
struct my-graphrep-tag { }; 

tentplate < class stored-edge > 
class graph-representation-gen< stored-edge, my-graphrep-tag > { 

typedef std::list<pair<size-t, stored-edge> > EdgeList; 
typedof EdgeList ::iterator IterlD; 
typedef std::vector<EdgeList>::iterator Iter2D; 

public : 
typsdef adjacency-list<my-graphrep_tag> rep-tag; 
typadef vector<EdgeList> graphrep-type; 

static Iter2D get-target (Iter2D b, IterlD i) 
{ return b + (*i).first; } 

static stored-edge* get-edge(IterlD i) 
{ return &((*i).second); } 

static boo1 add(EdgeList& elist, size-t vertex-nun, const stored-edge& e); 
static void remove(EdgeList& elist, size-t vertex-nun); 

1; 

//Use the above representation to create a graph type. 
typedef graph< adjacency-list< my-graphrep-tag > > Graph; 

Figure 11: An example of constructing a GGCL Graph out of STL vector components. 

perform comparison between GGCL and Combinatorics [21] we 
mentioned previously because it is written in Mathematics. 

Our experiments compare the performance of three algorithms: 
bf s, df s, and di j ks tra. The bf s algorithm calculates the dis- 
tance and the predecessor for every reachable vertex from a starting 
vertex. The df s algorithm calculates the discoveq time and fin- 
ishing time of vertices. The di j ks tra algorithm calculates the 
distance and the predecessor of every vertex from a starting vertex. 

Figure 14, Figure 15 and Figure 16 show the results for those algo- 
rithms applied to randomly generated graphs having a varying num- 
ber of edges and a varying number of vertices. Because of lacking 
Dijkstra’ a algorithm in GTL, it is not in Figure 16. All results were 
obtained on a Sun Microsystems Ultra 30 with the UltraSPARC-II 
296MHz microprocessor. For these experiments, GGCL is 5 to 7 
times faster than LEDA. 

5.2 Comparison to Special Purpose Library 
In additionn, we demonstrate the performance of a GGCL-based 
implementation of the multiple mininum degree algorithm [ 131 us- 
ing selected matrices from the Harwell-Boeing collection [9] and 
the University of Florida’s sparse matrix collection [2]. Our tests 
compare the execution time of our implementation against that of 
the equivalent SPARSPAK Fortran algorithm (GENMMD) [7]. For 
each case, our implementation and GENMMD produced identical 
orderings. Note that the performance of our implementation is es- 
sentially equal to that of the Fortran implementation and even sur- 
passes the Fortran implementation in a few cases. 

5.3 Template Issues 
There are several issues that o&en come up in libraries that make 
heavy use of C++ templates and advanced language features, such 
as code size, compile times, ease of debugging, and compiler porta- 
bility. For template libraries such as GGCL, code size is very much 

lo3 

2000 vertices(GTL) 
500 vettices(LEDA) 
lOOOvertices(LEDA) 
2000veRices(LEDA) 
500 vertices(GGCL) 

10” 
lo3 10' 

Numberof Edges 

Figure 14: Performance comparison of the bfs algorithm in 
GGCL with that in LEDA and in GTL. Every curve represents a 
graph with fixed number of vertices and with varied number of 
edges. 
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template < class ColorDecorator, class Base = null-visitor > 
class bfs-visitor : public Base { 

typedef typename ColorDecorator: :return-type color-type; 
public: 

// constructors . . . 

temiplate <class Vertex> 
void initialize(Vertex u) { 

color[u] = color-traitstcolor-type>::whiteO; 
Base: :initialize(u); 

I 

template <class Vertex> 
void start(Vertexu) { 

color[ul = color-traits<color-type>::grayo: 
Base::start(u); 

I 

template <class Vertex> 
void finish(Vertex u) { 

color[ul = color-traits<color-type>::blackO; 
Base::finish(u); 

1 

template <class Edge> 
boo1 process(Edge e) { 

typedef Edge: :vertex-type Vertex; 
Vertex v = e.target(); 
if ( is-undiscovered(v) 1 { 

color[v] = color-traits<color-type>::grayO; 
Base::process(e); 
return true: 

I 
return false; 

1 

template <class Vertex> 
boo1 is-undiscovered(Vertex u) { 

return (color[ul == color-traits<color-type>::whiteOJ; 
1 

protected: 
ColorDecorator color; 

1; 

Figure 13: An example model of the Visitor concept. 
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Matrix n nnz (( GENMMD 1 GGCL ] 

Table 6: Test matrices and ordering time in seconds, for GENMMD (Fortran) and GGCL (C++) implementations of minimum degree 
ordering. Also shown are the matrix order (n) and the number of off-diagonal non-zero elements (nnz). 

.-* . 500 vertices (GTL) 

.-+ 1000 vertices (GTL) 
-c - 2000 vertices (GTL) 

-a- 500 vertices (LEDA) 
-a- 1000 vertices (LEDA) 
-a- 2000 vertices (LEDA) 
--v--- 500 vertices(GGCL) 
t- 1000 vertices (GGCL) 

Number of Edges 

Figure 15: Performance comparison of the dfs algorithm in 
GGCL with that in LEDA and in GTL. Every curve represents a 
graph with fixed number of vertices and with varied number of 
edges. 

Number of Edges 

Figure 16: Performance comparison of the di j ks tra algorithm 
in GGCL with that in LEDA. Every curve represents a a graph with 
fixed number of vertices and with varied number of edges. 
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dependent on how the library is used. If a particul~ code only 
uses a few GGCL algorithms and graph types, then the executable 
size will actually be much smaller than it would be using typical 
libraries. With a template library, only the tinctions that are ac- 
tually used are included. On the other hand, with a traditional li- 
brary, the whole object module will be linked in even though only 
one fhwztion in the module may be used. To demonstrate these 
effects, we compare the size of sample executables of bf s, df s, 
and di j ks tra algorithms in GTL, LEDA, and GGCL in Table 7. 
All are compiled by egcsl .1.2 using the same compilation options. 
(Similar results are obtained for other compilers and architectures.) 
Of course, with a template library like GGCL it is very easy to in- 
stantiate redundant functionality which may unnecessarily increase 
the executable size, so users with large projects should be cognizant 
of this issue. There are techniques one can use to reduce this effect 
by explicity instantiating template fhnctions in object files that can 
be shared. 

Executable Size @Bytes) 
PackageName bfs dfs dijkstra 

'11 

Table 7: Comparison of executable sizes for bfs, dfs, and 
di j ks tra implemented with GTL, LEDA and GGCL. 

Long compilation times are often cited as a drawback to template 
libraries, especially those that use expression templates [23 J. Since 
GGCL does not use expression templates, and the overall code size 
of GGCL is moderate, we have not experienced severe problems 
in this regard. In addition, many compilers provice precompiled 
header mechanisms to improve compile times for template libraries 
such as GGCL. 

Another concern for users of template libraries are the almost im- 
penetrable error messages that occur when the library is misused 
(e.g., when a template parameter type does not model the appropri- 
ate concept). We haved recently addressed this problem with some 
template techniques that cause the arguments to a library call to be 
checked up front with regards to the type requirements. With this 
mechanism the resulting error messages are much more informa- 
tive. 

Lastly, compiler portability is currently an issue for libraries that 
use the more advanced features of C++. GGCL currently com- 
piles with egcs, Metrowerks CodeWarrior, Intel C++, SGI MIP- 
Spro, KAI C++, and other Edison Design Group based compilers. 
We foresee some difficulty porting to Visual C++ because of its 
lack of standards conformance. Since the C++ standard has been 
finalized, we fully expect that language conformance problems will 
cease to be a significant issue in the near future. 

6 CONCLUSION 
In this paper, we applied the emerging paradigm of generic pro- 
gramming to the important problem domain of graphs and graph al- 
gorithms. Our resulting framework, the Generic Graph Component 
Library, is a collection of generic algorithms and data structures 
that interoperate through the abstract graph interface comprised 

of Vertex, Edge, Visitor, and Decorator concepts. The generic 
GGCL algorithms allow basic algorithm patterns to be applied in 
different ways to build up more complicated graph algorithms, re- 
sulting in significant code reuse. Similarly, since GGCL algorithms 
are independent of the underlying graph representation, custom 
graph representation implementation can be mixed and matched 
with GGCL graph algorithms. Since our C++ implementation of 
the generic programming paradigm makes heavy use of static (com- 
pile-time) polymorphism, there is no run-time overhead associated 
with the powerful abstractions provided by GGCL. Experimen- 
tal results demonstrate that the GGCL executes significantly faster 
than LEDA, a well-known object-oriented graph library, and can 
even compete with high performance Fortran codes. 

Current work with the GGCL focuses on the implementation and 
inclusion into GGCL of other important (classical) algorithms. In 
addition, we are extending the GGCL based on application-specific 
needs. For instance, one of the motivations behind the development 
of GGCL was the need for highly-efficient graph-based algorithms 
for sparse matrix orderings in the Matrix Template Library. 

7 AVAILABILITY 
The source code and complete documentation for the GGCL can 
be downloaded from the GGCL home page at 

http://lsc.nd.edu/research/ggcl/ 
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