import Option
import Base
union Nat {
zero
suc(Nat)
}
recursive operator +(Nat,Nat) -> Nat{
operator +(zero, m) = m
operator +(suc(n), m) = suc(n + m)
}
recursive operator *(Nat,Nat) -> Nat{
operator *(zero, m) = zero
operator *(suc(n), m) = m + n * m
}
recursive expt(Nat,Nat) -> Nat{
expt(zero, n) = suc(zero)
expt(suc(p), n) = n * expt(p, n)
}
fun operator ^(a:Nat, b:Nat) {
expt(b, a)
}
recursive max(Nat,Nat) -> Nat{
max(zero, n) = n
max(suc(m'), n) =
switch n {
case zero {
suc(m')
}
case suc(n') {
suc(max(m', n'))
}
}
}
recursive min(Nat,Nat) -> Nat{
min(zero, n) = zero
min(suc(m'), n) =
switch n {
case zero {
zero
}
case suc(n') {
suc(min(m', n'))
}
}
}
fun pred(n:Nat) {
switch n {
case zero {
zero
}
case suc(n') {
n'
}
}
}
recursive operator ∸(Nat,Nat) -> Nat{
operator ∸(zero, m) = zero
operator ∸(suc(n), m) =
switch m {
case zero {
suc(n)
}
case suc(m') {
n ∸ m'
}
}
}
recursive operator ≤(Nat,Nat) -> bool{
operator ≤(zero, m) = true
operator ≤(suc(n'), m) =
switch m {
case zero {
false
}
case suc(m') {
n' ≤ m'
}
}
}
fun operator <(x:Nat, y:Nat) {
suc(x) ≤ y
}
fun operator >(x:Nat, y:Nat) {
y < x
}
fun operator ≥(x:Nat, y:Nat) {
y ≤ x
}
recursive summation(Nat,Nat,(fn Nat -> Nat)) -> Nat{
summation(zero, begin, f) = zero
summation(suc(k), begin, f) = f(begin) + summation(k, suc(begin), f)
}
recursive iterate<T>(Nat,T,(fn T -> T)) -> T{
iterate(zero, init, f) = init
iterate(suc(n), init, f) = f(@iterate<T>(n, init, f))
}
recursive pow2(Nat) -> Nat{
pow2(zero) = suc(zero)
pow2(suc(n')) = suc(suc(zero)) * pow2(n')
}
recursive equal(Nat,Nat) -> bool{
equal(zero, n) =
switch n {
case zero {
true
}
case suc(n') {
false
}
}
equal(suc(m'), n) =
switch n {
case zero {
false
}
case suc(n') {
equal(m', n')
}
}
}
recursive dist(Nat,Nat) -> Nat{
dist(zero, n) = n
dist(suc(m), n) =
switch n {
case zero {
suc(m)
}
case suc(n') {
dist(m, n')
}
}
}
fun log(n) {
find_log(n, zero, zero)
}
add_commute: (all n:Nat. (all m:Nat. n + m = m + n))
add_assoc: (all m:Nat, n:Nat, o:Nat. (m + n) + o = m + (n + o))
assoc_add: (all m:Nat, n:Nat, o:Nat. m + (n + o) = (m + n) + o)
add_both_sides_of_equal: (all x:Nat. (all y:Nat, z:Nat. ((x + y = x + z) ⇔ (y = z))))
left_cancel: (all x:Nat. (all y:Nat, z:Nat. (if x + y = x + z then y = z)))
add_both_monus: (all z:Nat, y:Nat, x:Nat. (z + y) ∸ (z + x) = y ∸ x)
add_monus_identity: (all m:Nat. (all n:Nat. (m + n) ∸ m = n))
monus_monus_eq_monus_add: (all x:Nat. (all y:Nat. (all z:Nat. (x ∸ y) ∸ z = x ∸ (y + z))))
monus_order: (all x:Nat, y:Nat, z:Nat. (x ∸ y) ∸ z = (x ∸ z) ∸ y)
mult_commute: (all m:Nat. (all n:Nat. m * n = n * m))
dist_mult_add: (all a:Nat, x:Nat, y:Nat. a * (x + y) = a * x + a * y)
dist_mult_add_right: (all x:Nat, y:Nat, a:Nat. (x + y) * a = x * a + y * a)
mult_assoc: (all m:Nat. (all n:Nat, o:Nat. (m * n) * o = m * (n * o)))
less_equal_implies_less_or_equal: (all x:Nat. (all y:Nat. (if x ≤ y then (x < y or x = y))))
less_equal_not_equal_implies_less: (all x:Nat, y:Nat. (if (x ≤ y and not (x = y)) then x < y))
less_implies_less_equal: (all x:Nat. (all y:Nat. (if x < y then x ≤ y)))
less_equal_refl: (all n:Nat. n ≤ n)
equal_implies_less_equal: (all x:Nat, y:Nat. (if x = y then x ≤ y))
less_equal_antisymmetric: (all x:Nat. (all y:Nat. (if (x ≤ y and y ≤ x) then x = y)))
less_equal_trans: (all m:Nat. (all n:Nat, o:Nat. (if (m ≤ n and n ≤ o) then m ≤ o)))
not_less_implies_less_equal: (all x:Nat. (all y:Nat. (if not (x < y) then y ≤ x)))
less_irreflexive: (all x:Nat. not (x < x))
less_not_equal: (all x:Nat, y:Nat. (if x < y then not (x = y)))
greater_not_equal: (all x:Nat, y:Nat. (if x > y then not (x = y)))
trichotomy: (all x:Nat. (all y:Nat. (x < y or x = y or y < x)))
trichotomy2: (all y:Nat, x:Nat. (if (not (x = y) and not (x < y)) then y < x))
dichotomy: (all x:Nat, y:Nat. (x ≤ y or y < x))
not_less_equal_iff_greater: (all x:Nat, y:Nat. (not (x ≤ y) ⇔ (y < x)))
less_implies_not_greater: (all x:Nat. (all y:Nat. (if x < y then not (y < x))))
not_less_equal_less_equal: (all x:Nat, y:Nat. (if not (x ≤ y) then y ≤ x))
less_equal_add: (all x:Nat. (all y:Nat. x ≤ x + y))
less_equal_add_left: (all x:Nat, y:Nat. y ≤ x + y)
add_mono: (all a:Nat, b:Nat, c:Nat, d:Nat. (if (a ≤ c and b ≤ d) then a + b ≤ c + d))
add_mono_less: (all a:Nat, b:Nat, c:Nat, d:Nat. (if (a < c and b < d) then a + b < c + d))
add_both_sides_of_less_equal: (all x:Nat. (all y:Nat, z:Nat. ((x + y ≤ x + z) ⇔ (y ≤ z))))
add_both_sides_of_less: (all x:Nat, y:Nat, z:Nat. ((x + y < x + z) ⇔ (y < z)))
mult_mono_le: (all n:Nat. (all x:Nat, y:Nat. (if x ≤ y then n * x ≤ n * y)))
mult_mono_le_r: (all n:Nat. (all x:Nat, y:Nat. (if x ≤ y then x * n ≤ y * n)))
mult_cancel_right_less: (all x:Nat, y:Nat, z:Nat. (if y * x < z * x then y < z))
mult_cancel_left_less: (all x:Nat, y:Nat, z:Nat. (if x * y < x * z then y < z))
monus_add_assoc: (all n:Nat. (all l:Nat, m:Nat. (if m ≤ n then l + (n ∸ m) = (l + n) ∸ m)))
monus_add_identity: (all n:Nat. (all m:Nat. (if m ≤ n then m + (n ∸ m) = n)))
monus_right_cancel: (all x:Nat, y:Nat, a:Nat. (if (x ∸ a = y ∸ a and a ≤ x and a ≤ y) then x = y))
less_equal_add_monus: (all m:Nat. (all n:Nat, o:Nat. (if (n ≤ m and m ≤ n + o) then m ∸ n ≤ o)))
le_exists_monus: (all n:Nat, m:Nat. (if n ≤ m then some x:Nat. m = n + x))
less_trans: (all m:Nat, n:Nat, o:Nat. (if (m < n and n < o) then m < o))
dist_mult_monus: (all x:Nat. (all y:Nat, z:Nat. x * (y ∸ z) = x * y ∸ x * z))
dist_mult_monus_one: (all x:Nat, y:Nat. x * (y ∸ suc(zero)) = x * y ∸ x)
n_le_nn: (all n:Nat. n ≤ n * n)
max_greater_right: (all y:Nat, x:Nat. y ≤ max(x, y))
max_greater_left: (all x:Nat, y:Nat. x ≤ max(x, y))
max_is_left_or_right: (all x:Nat, y:Nat. (max(x, y) = x or max(x, y) = y))
max_symmetric: (all x:Nat, y:Nat. max(x, y) = max(y, x))
max_assoc: (all x:Nat, y:Nat, z:Nat. max(max(x, y), z) = max(x, max(y, z)))
max_equal_greater_right: (all x:Nat, y:Nat. (if x ≤ y then max(x, y) = y))
max_equal_greater_left: (all x:Nat, y:Nat. (if y ≤ x then max(x, y) = x))
max_less_equal: (all x:Nat, y:Nat, z:Nat. (if (x ≤ z and y ≤ z) then max(x, y) ≤ z))
recursive parity(Nat,bool) -> bool{
parity(zero, b) = b
parity(suc(n'), b) = parity(n', not b)
}
fun is_even(n:Nat) {
parity(n, true)
}
fun is_odd(n:Nat) {
parity(n, false)
}
fun EvenNat(n:Nat) {
some m:Nat. n = suc(suc(zero)) * m
}
fun OddNat(n:Nat) {
some m:Nat. n = suc(suc(suc(zero)) * m)
}
even_or_odd: (all n:Nat. (is_even(n) or is_odd(n)))
addition_of_evens: (all x:Nat, y:Nat. (if (EvenNat(x) and EvenNat(y)) then EvenNat(x + y)))
is_even_odd: (all n:Nat. ((if is_even(n) then EvenNat(n)) and (if is_odd(n) then OddNat(n))))
Even_or_Odd: (all n:Nat. (EvenNat(n) or OddNat(n)))
Even_not_Odd: (all n:Nat. (EvenNat(n) ⇔ not OddNat(n)))
summation_cong: (all k:Nat. (all f:(fn Nat -> Nat), g:(fn Nat -> Nat), s:Nat, t:Nat. (if (all i:Nat. (if i < k then f(s + i) = g(t + i))) then summation(k, s, f) = summation(k, t, g))))
summation_add: (all a:Nat. (all b:Nat, s:Nat, t:Nat, f:(fn Nat -> Nat), g:(fn Nat -> Nat), h:(fn Nat -> Nat). (if ((all i:Nat. (if i < a then g(s + i) = f(s + i))) and (all i:Nat. (if i < b then h(t + i) = f((s + a) + i)))) then summation(a + b, s, f) = summation(a, s, g) + summation(b, t, h))))
equal_refl: (all n:Nat. equal(n, n))
equal_complete_sound: (all m:Nat. (all n:Nat. ((m = n) ⇔ equal(m, n))))
not_equal_not_eq: (all m:Nat, n:Nat. (if not equal(m, n) then not (m = n)))
recfun operator /(n:Nat, m:Nat) -> Nat
measure n {
if n < m then
zero
else
if m = zero then
zero
else
suc(zero) + (n ∸ m) / m
}
fun operator %(n:Nat, m:Nat) {
n ∸ (n / m) * m
}
strong_induction: (all P:(fn Nat -> bool), n:Nat. (if (all j:Nat. (if (all i:Nat. (if i < j then P(i))) then P(j))) then P(n)))
fun divides(a:Nat, b:Nat) {
some k:Nat. a * k = b
}
pow_add_r: (all n:Nat, m:Nat, o:Nat. m ^ (n + o) = m ^ n * m ^ o)
pow_mul_l: (all o:Nat, m:Nat, n:Nat. (m * n) ^ o = m ^ o * n ^ o)
pow_mul_r: (all o:Nat, m:Nat, n:Nat. (m ^ n) ^ o = m ^ (n * o))
pow_le_mono_l: (all c:Nat, a:Nat, b:Nat. (if a ≤ b then a ^ c ≤ b ^ c))
recfun gcd(a:Nat, b:Nat) -> Nat
measure b {
if b = zero then
a
else
gcd(b, a % b)
}
gcd_divides: (all b:Nat, a:Nat. (divides(gcd(a, b), a) and divides(gcd(a, b), b)))
less_equal_pow_log: (all n:Nat. n ≤ pow2(log(n)))
fun lit(a:Nat) {
a
}
nat_zero_add: (all y:Nat. ℕ0 + lit(y) = lit(y))
lit_suc_add: (all x:Nat, y:Nat. lit(suc(x)) + lit(y) = lit(suc(lit(x) + lit(y))))
suc_lit: (all n:Nat. suc(lit(n)) = lit(suc(n)))
lit_idem: (all x:Nat. lit(lit(x)) = lit(x))
nat_zero_mult: (all y:Nat. ℕ0 * lit(y) = ℕ0)
nat_one_mult: (all n:Nat. ℕ1 * n = n)
nat_mult_one: (all n:Nat. n * ℕ1 = n)
lit_suc_mult: (all m:Nat, n:Nat. lit(suc(m)) * lit(n) = lit(n) + lit(m) * lit(n))
lit_mult_lit_suc: (all m:Nat, n:Nat. lit(m) * lit(suc(n)) = lit(m) + lit(m) * lit(n))
lit_mult_suc: (all m:Nat, n:Nat. lit(m) * suc(n) = lit(m) + lit(m) * n)
nat_zero_monus: (all m:Nat. ℕ0 ∸ lit(m) = ℕ0)
nat_monus_zero: (all n:Nat. n ∸ ℕ0 = n)
lit_suc_monus_suc: (all n:Nat, m:Nat. lit(suc(n)) ∸ lit(suc(m)) = lit(n) ∸ lit(m))
lit_dist_mult_add: (all a:Nat, x:Nat, y:Nat. lit(a) * (x + y) = lit(a) * x + lit(a) * y)
lit_dist_mult_add_right: (all x:Nat, y:Nat, a:Nat. (x + y) * lit(a) = x * lit(a) + y * lit(a))
mult_two: (all n:Nat. n + n = ℕ2 * n)
lit_suc_add2: (all x:Nat, y:Nat. suc(lit(x) + y) = lit(suc(x)) + y)
nat_suc_one_add: (all n:Nat. suc(n) = ℕ1 + n)
lit_add_suc: (all n:Nat, m:Nat. lit(n) + suc(m) = lit(suc(n)) + m)
lit_mult_left_cancel: (all m:Nat, a:Nat, b:Nat. (if lit(suc(m)) * a = lit(suc(m)) * b then a = b))
sum_n: (all n:Nat. ℕ2 * summation(n, ℕ0, fun x { x }) = n * (n ∸ ℕ1))
sum_n': (all n:Nat. ℕ2 * summation(suc(n), ℕ0, fun x { x }) = n * (n + ℕ1))
pos_mult_left_cancel: (all m:Nat, a:Nat, b:Nat. (if (ℕ0 < m and m * a = m * b) then a = b))
pos_mult_right_cancel_less: (all c:Nat, a:Nat, b:Nat. (if (ℕ0 < c and a * c < b * c) then a < b))
pos_mult_left_cancel_less_equal: (all n:Nat, x:Nat, y:Nat. (if (ℕ0 < n and n * x ≤ n * y) then x ≤ y))
pos_mult_both_sides_of_less: (all n:Nat, x:Nat, y:Nat. (if (ℕ0 < n and x < y) then n * x < n * y))
nat_zero_less_one_add: (all n:Nat. ℕ0 < ℕ1 + n)
nat_add_to_zero: (all n:Nat, m:Nat. (if n + m = ℕ0 then (n = ℕ0 and m = ℕ0)))
nat_less_add_pos: (all x:Nat, y:Nat. (if ℕ0 < y then x < x + y))
nat_monus_zero_iff_less_eq: (all x:Nat, y:Nat. ((x ≤ y) ⇔ (x ∸ y = ℕ0)))
nat_monus_one_pred: (all x:Nat. x ∸ ℕ1 = pred(x))
nat_monus_cancel: (all n:Nat. n ∸ n = ℕ0)
nat_zero_or_positive: (all x:Nat. (x = ℕ0 or ℕ0 < x))
nat_not_one_add_zero: (all n:Nat. not (ℕ1 + n = ℕ0))
nat_positive_suc: (all n:Nat. (if ℕ0 < n then some n':Nat. n = ℕ1 + n'))
nat_zero_le_zero: (all x:Nat. (if x ≤ ℕ0 then x = ℕ0))
summation_next: (all n:Nat, s:Nat, f:(fn Nat -> Nat). summation(ℕ1 + n, s, f) = summation(n, s, f) + f(s + n))
less_zero_false: (all x:Nat. (x < zero) = false)
zero_less_equal_true: (all x:Nat. (zero ≤ x) = true)